Course: CS 1050C - Test 3 (FALL '03)

Instructor : Prasad Tetali, office: Skiles 126, email: tetali@math.gatech.edu
Time: 50 minutes Total Points : $10+10+10=30$

Please explain all your answers.

Name: Prasad Tetali

Problem 1. $(4+4+2 \mathrm{pts})$
(a) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x)=x /\left(1+x^{2}\right)$. Is f injective (one-to-one)? Is f surjective (onto)?

Solution. Not injective : if $x_{1}=1 / x_{2}$ then $f\left(x_{1}\right)=f\left(x_{2}\right)$, so for example $\mathrm{f}(2)=\mathrm{f}(1 / 2)$. (We would come up with this if we tried checking the definition of injective: suppose $f\left(x_{1}\right)=$ $f\left(x_{2}\right)$, then we see that $x_{1}\left(1+x_{2}^{2}\right)=x_{2}\left(1+x_{1}^{2}\right)$, which implies that $\left(x_{1}-x_{2}\right)=x_{1} x_{2}\left(x_{1}-x_{2}\right)$. So if $x_{1} \neq x_{2}$, then we get that $x_{1} x_{2}=1$!.

Not surjective: given $y \in \mathbf{R}$, it turns out there is not necessarily an x such that $f(x)=y$. Given y, we need to solve for x in $x /\left(1+x^{2}\right)=y$ which amounts to solving for x in the quadratic equation, $y x^{2}-x+y=0$, (where y is the given real number. The solution of this is $x=\frac{1 \pm \sqrt{1-4 y^{2}}}{2 y}$, which is not real, if $4 y^{2}>1$.
(b) Is the function $f: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z}$ defined by $f(m, n)=m^{2}+n^{2}$ injective ? Is it surjective?

Solution. Not injective: $f(m, n)=f(n, m)($ also $=f(m,-n)$.)
Not surjective: no m, n such that $m^{2}+n^{2}=3$, for example. Can easily be seen by considering $m, n \in\{-1,0,1\}$.

General Info. A fact from elementary number theory is that no odd prime of the form $4 k+3$ can be written as a sum of two squares! On the other hand, a famous theorem of Lagrange shows that EVERY positive integer can be written as a sum of FOUR squares (assuming we are allowed to use 0^{2}).
(c) Write the negation of " $\forall x \in D$, if $P(x)$ then $Q(x)$." Write the contrapositive of the statement in quotation marks.

Solution. The negation is " $\exists x \in D$, such that $P(x)$ and $\neg Q(x)$."
The contrapositive is " $\forall x \in D$, if $\neg Q(x)$ then $\neg P(x)$."

Problem 2. $(2+2+2+2+2$ pts $)$ Briefly explain the following.
(a) Let

$$
f(n)=n+\frac{n}{2}+\frac{n}{4}+\frac{n}{8}+\frac{n}{16}+\cdots+4+2+1 .
$$

As n gets large, which grows faster : $f(n)$ or $n \log n$?
Solution. $n \log n$ grows faster: $f(n) \leq n\left(1+1 / 2+(1 / 2)^{2}+\cdots\right)=2 n=o(n \log n)$.
(b) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be an increasing function, meaning that, for all $x, y \in \mathbf{R}$, if $x<y$ then $f(x)<f(y)$. Give an example of an increasing function. If f is increasing then is f necessarily injective?

Solution. $f(x)=x$ is increasing. (So is $f(x)=x^{2}$.)
Necessarily injective: suppose $x_{1} \neq x_{2}$, then without loss of generality assume that $x_{1}<x_{2}$. Now f increasing implies that $f\left(x_{1}\right)<f\left(x_{2}\right)$, in particular, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
(c) Give the definition of a countable set.

Solution. A set is countable if (i) it is finite, or if (ii) there is a one-to-one correspondence from \mathbf{Z}^{+}to the set.
(d) How many integers must you pick from $\{1,2, \ldots 2 n\}$ to make sure you get at least k odd numbers? (You may assume that $1 \leq k \leq n$.)

Solution. Since there are n even numbers, we need to pick at least $n+k$ numbers to guarantee that we get at least k odd numbers.
(e) If $f_{1}(x)=O\left(g_{1}(x)\right)$, and $f_{2}(x)=O\left(g_{2}(x)\right)$, then can we say that $f_{1}(x)+f_{2}(x)=$ $O\left(g_{1}(x)+g_{2}(x)\right)$? What can we say about the growth of $f_{1}(x) \times f_{2}(x)$ in terms of $g_{1}(x)$ and $g_{2}(x)$?

Solution. Yes, for the first part, since

$$
\begin{aligned}
& f_{1}(x) \leq M_{1} g_{1}(x), \text { for } x>x_{1} \\
& f_{2}(x) \leq M_{2} g_{2}(x), \text { for } x>x_{2}
\end{aligned}
$$

together imply that for the choice $M=\max \left\{M_{1}, M_{2}\right\}$, and $x_{0}=\max \left\{x_{1}, x_{2}\right\}$, we have

$$
f_{1}(x)+f_{2}(x) \leq M\left(g_{1}(x)+g_{2}(x)\right), \text { for } x>x_{0} .
$$

Similarly, we can choose $M=M_{1} \times M_{2}$, with x_{0} the same as above, and conclude that

$$
f_{1}(x) f_{2}(x)=O\left(g_{1}(x) g_{2}(x)\right)
$$

Problem 3. (10 pts) Answer the following in True or False.
(a) The set of all functions from the set of positive integers to $\{0,1\}$ is countable.

False. See Exercise 7.6.28.
(b) $n=O\left(2^{(\log n)^{2}}\right)$.

True.
(c) The contrapositive of "all hummingbirds are richly colored" is "every bird that is not richly colored is not a hummingbird."

True. Write the original statement using the universal quantifier: "for every bird, if it is a hummingbird then it is richly colored."
(d) The converse of "all hummingbirds are richly colored" is "all richly colored birds are hummingbirds."

True.
(e) The set of real numbers x such that $2<x<5$ is countable.

False : see Exercise 7.6.18.
(f) The set of all subsets of a finite set is countable.

True : The power set of a finite set is finite!
(g) $2^{n}=O\left(n^{\sqrt{n}}\right)$.

False : can disprove by taking logarithms on both sides.
(h) n^{n} grows faster than n ! which in turn grows faster than 2^{n}.

True : as proved in class.
(i) Let $f(n)=1+2+3+\cdots+n$. Then $f(n)=o\left(n^{2}\right)$.

False : $f(n)=n(n+1) / 2=\Theta\left(n^{2}\right)$.
(j) Given any programming language, there exists an uncomputable function (by any program) in that language.

True : as mentioned in class, and also see the reading exercise assigned in class : Example 7.6.6.

