Course: CS 1050C - QUIZ 3 (FALL '03)

Instructor : Prasad Tetali, office: Skiles 126, email: tetali@math.gatech.edu
Time: 20 minutes Total Points : $2+2+3+3+2+3=15$ pts. Please write your name and explain all your answers.

Name: Prasad Tetali Date: Nov. 24th, 2003.
Throughout you may assume that a relation is a binary relation.
Problem 1. (2pts) Let $S=\{1,2, \ldots, n\}$. Consider the relation $R=\{(1,1),(2,2), \ldots,(n, n)\}$ on S. Is R an equivalence relation? Explain your answer.

Soln. Yes, it is an equivalence relation: clearly reflexive; symmetry and transitivity are vacuously true.

Problem 2. (2pts) How many symmetric relations can one define on a set of n elements?

Soln. (similar problem done in class, with $n=8$.) Since a relation on a set S is a subset of $S \times S$, if S has size n, then there are $n \times n=n^{2}$ possible pairs to choose from in forming a relation. If the relation has to be symmetric, then we only have $n^{2}-\binom{n}{2}$ choices, since every time (x, y) is included in the relation (for $x \neq y$), then (y, x) has to be included as well, and there are precisely $\binom{n}{2}$ such pairs.

Thus the answer is $2^{n^{2}-\binom{n}{2}}$, since we get to either include or not include for each of the available choices.

Problem 3. (3pts) Find the transitive closure of the following relation, illustrated using a directed graph:

Soln. The only pairs to be included to get the transitive closure are $(1,3)$ and $(7,9)$.
Problem 4. (3pts) Answer in True or False:
(a) Reflexivity and Transitivity imply Symmetry of a relation.

False, for example consider the relation $R=\{(1,1),(1,2),(2,2)\}$ on the set $S=\{1,2\}$. It is reflexive and transitive, but not symmetric.
(b) Given a partition of a set, one can always define an equivalence relation so that the equivalence classes correspond to the parts of the partition.

True, simply define the relation R by $x R y$ if x and y are in the same part of the partition. Can easily be checked that this is well-defined and that it is an equivalence relation.
(c) It takes a polynomial in n steps to move n disks from one peg to another in the Tower of Hanoi problem.

False, since it takes $2^{n}-1$ steps, which is exponential in n.

Problem 5. (2pts) A set of blocks contains blocks of heights 1,2 , and 4 inches. Let t_{n} be the number of ways to construct a tower of height n inches using blocks from the set. Find a recurrence relation for t_{n}, for $n \geq 1$.

Soln. First partition the towers based on the first block: either the first block is of height 1 in . or 2 in . or 4 in . In each case, the problem reduces to building a (shorter) tower of height 1 in . or 2 in . or 4 in . less, respectively. Thus we see that, for $n \geq 5$, we have

$$
t_{n}=t_{n-1}+t_{n-2}+t_{n-4},
$$

for the number of towers of height n.

The initial conditions can be worked out by explicitly writing down all possible solutions: $t_{1}=1, t_{2}=2$ (since we have $(1,1)$ or $\left.(2)\right), t_{3}=3$ (since we have $(2,1)$ or $(1,2)$ or $(1,1,1)$), and finally $t_{4}=6$.

Problem 6. (3pts) Solve for C_{n} in terms of n, given that $C_{0}=1$ and $C_{1}=2$, and for $n \geq 2$,

$$
C_{n}+C_{n-1}-6 C_{n-2}=0
$$

Soln. As outlined in class, first write down the characteristic equation, $x^{2}+x-6=0$, which has the roots $-3,2$.

Since the roots are distinct, the general solution is $C_{n}=a(-3)^{n}+b(2)^{n}$.
Use the initial conditions to determine a and b :

$$
\begin{gathered}
C_{0}=1=a+b, \\
C_{1}=2=a(-3)+b(2),
\end{gathered}
$$

imply that $a=0$ and $b=1$.
Thus the final solution is $C_{n}=2^{n}$.

