
CS 3510 - Design & Analysis of Algorithms

Co-Instructor : Prasad Tetali, office: Skiles 132, email: tetali@math.gatech.edu

Comments on some Exercises from Chapter 1, following Lecture on Feb. 7, 2018:

Problem 1.18. (It might help to know the following.)
Besides running the GCD algorithm on the given numbers, here is another way to compute the

GCD of two numbers, assuming one knows the prime factorizations of the two numbers,
which is indeed a big assumption!

First an example: Suppose m = 23 · 52 · 11 and n = 22 · 32 · 5 · 113. Then it is easy to see that

GCD(m,n) = 22 · 5 · 11 ,

wherein we take each prime that appears in either m or n, and raise it to the smaller of the two
powers to which it appears in the two numbers. Note that 3 does not appear in m, while it appears
in n, so we take it as appearing to power 0 in m. And so on. The justification is that since the
GCD has to divide both m and n, each prime appearing in the GCD can only appear to a power
as high as in the minimum of the two appearances.

So more generally, suppose m = pa11 pa22 · · · pakk and n = pb11 pb22 · · · pbkk , where ai, bi ≥ 0 – indeed,
some of the ai or bi may be zero in m or n (bot not both). Then it is easy to see that we can write
a formula:

GCD(m,n) = p
min{a1,b1}
1 p

min{a2,b2}
2 · · · pmin{ak,bk}

k .

Similarly, the least common multiple (LCM) would be:

LCM(m,n) = p
max{a1,b1}
1 p

max{a2,b2}
2 · · · pmax{ak,bk}

k .

Of course, the beauty of Euclid’s GCD algorithm is that it finds efficiently in cubic time (in
the number of bits of the larger of the two numbers involved), the GCD, without knowing the
prime-factorizations. Given that factoring is hard, the GCD algorithm is indeed very valuable!

Problem 1.19. Recall that the basis of the GCD algorithm is that if a = q ·b+r, where 0 ≤ r < b,
and q ≥ 1, then GCD(a, b) = GCD(b, r) and we repeat this. So ask yourself, what happens (at
the end - what numbers you end up with) when you start with the consecutive Fibonacci numbers
and execute the algorithm. What happens after one step, for example? Then you might see the
pattern.

Optional Problem 1.35. Concerning, Wilson’s theorem, which asserts (N − 1)! ≡ −1 (mod N)
if and only if N is prime:

Since I brought this up in the class (and discussed Part (d)), let me answer the other parts here:
a) Let p be prime and 1 ≤ x ≤ p− 1. If x is its own inverse mod p, it means x2 ≡ 1 (mod p).

This means (x− 1)(x+ 1) ≡ 0 (mod p), which in turns means p divides either (x− 1) or (x+ 1) or
both. So x is either 1 or −1 (mod p); the latter is the same as p− 1.

b) By Part(a), we can pair up every integer from 2 up to p− 2 with its inverse that is distinct
from itself. Since their product equals 1. when we consider the product, (p − 1)! taken (mod p),
only 1 and p− 1 remain, and they multiply to −1 (mod p).

c) If N is not prime, suppose for a contradiction that (N−1)! ≡ −1 (mod N). Then this means
we have, for some integer k, (N − 1)! + 1 = kN , which implies

(N − 1)! − kN = 1 .

Since N is not prime, it has a factor d so that 1 < d < N . This d divides the left side of the above
equation (see why?), which means it should divide the right side. But the right side is 1, so we
obtain a contradiction. [Another way to complete the argument is to say that the above equation
implies that 1 is the GCD of (N − 1)! and N (see why?), which is not true, if N is composite.]


