
Graphs 

Graph specified by nodes and edges. 
   node  = country 
   edge  = neighbors 

Graph coloring problem: color nodes of graph with as few colors as 
possible, so that there is no edge between nodes of the same color. 

A cartographer’s problem 
Costa Rica 
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Exam scheduling 

This is also graph coloring! 
 Node = exam 
 Edge = some student is taking 
        both endpoint-exams 
 Color = time slot 
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Schedule final exams: 

- use as few time slots as possible 

-  can’t schedule two exams in the 
same slot if there’s a student 
taking both classes. 

The registrar’s problem 



Graphs, formally 

G = (V,E) where 
 V: vertices/nodes 
 E: edges 

V = {1,2,3,4,5} 
E = {{1,2}, {2,3}, {3,4}, {2,5}, {4,5}} 
Undirected edges: symmetric 

relationship 

Directed graphs 
(x,y): edge from x to y 

e.g.World wide web 
 node  URL 
 edge (u,v) u points to v 

Billions of nodes and edges! 1 
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Social networks 



Biological networks 



How are graphs stored on a computer? 
Adjacency matrix 
V x V matrix A 
A(i,j) =  1 if (i,j) is in E 
  0 otherwise 

Symmetric if G undirected  
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Adjacency list 

For each node, list of 
outgoing edges 

PRO  check for an edge in O(1) time 
CON  uses up O(V2) space 
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PRO  just O(E) space 
CON  check for an edge in O(V) time 
PRO  easily iterate through node’s neighbors 



Depth-first search in undirected graphs 

What parts of a graph are reachable from a given vertex? 
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With an adjacency list representation, this is like navigating a maze... 

Potential difficulty Don’t go round in 
circles Don’t miss anything 

Classical solution 

Cyber-analog 

Piece of chalk to mark 
visited junctions 

Ball of string – leads 
back to starting point 

Boolean variable for each 
vertex: visited or not STACK 



An exploration procedure 

procedure explore(G,v) 

input: graph G = (V,E); node v in V 
output: visited[u] is set to true 

for all u reachable from v 

visited[v] = true 
previsit(v) 
for each edge (v,u) in E: 
 if not visited[u]: 
  explore(G,u) 
postvisit(v) 
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Does “explore” work? 

procedure explore(G,v) 
visited[v] = true 
for each edge (v,u) in E: 
 if not visited[u]: 
  explore(G,u) 

Does it actually halt? 

For any node u, explore(G,u) is 
called at most once; 
thereafter visited[u] is set. 

Does it visit everything reachable from v? 

Suppose it misses node u reachable from v; 
we’ll derive a contradiction. 

Pick any path from v to u, and let z be the 
last node on the path that was visited. 

But w would not have been overlooked 
during explore(G,z); this is a contradiction. 

v z w u 



Alternative proof 

procedure explore(G,v) 
visited[v] = true 
for each edge (v,u) in E: 
 if not visited[u]: 
  explore(G,u) 

Does explore(G,v) visit everything 
reachable from v? 

Do a proof by induction. 



Undirected connectivity 

An undirected graph is connected if there 
is a path between any pair of nodes. 

This graph has 2 connected components. 

procedure dfs(G) 
for all v in V: 
 visited[v] = false 
for all v in V: 
 if not visited[v]: 
  explore(G,v) 

explore(G,v) returns the connected 
component containing v.  
To explore the rest of the graph, 
restart explore() elsewhere. 
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explore(G,a) explore(G,h) 

a 

b c 

e 

d 

j 

i 

h 

g 

f 

DFS decomposes an undirected graph 
into its connected components! 



Running time analysis 

procedure explore(G,v) 
visited[v] = true 
for each edge (v,u) in E: 
 if not visited[u]: 
  explore(G,u) 

procedure dfs(G) 
for all v in V: 
 visited[v] = false 
for all v in V: 
 if not visited[v]: 
  explore(G,v) 

How long does dfs(G) take? 

explore(G,v) is called exactly once 
for each node v. 

During this call,  
time = O(1) + time for inner loop 

Therefore total time =  
O(V) + time for inner loops 

During inner loops: each edge is 
examined twice, once from each 
endpoint. Therefore O(E). 

Total: O(V+E), linear in the size of 
the graph. 



Alternative running time analysis 

procedure explore(G,v) 
visited[v] = true 
for each edge (v,u) in E: 
 if not visited[u]: 
  explore(G,u) 

procedure dfs(G) 
for all v in V: 
 visited[v] = false 
for all v in V: 
 if not visited[v]: 
  explore(G,v) 

How long does dfs(G) take? 

explore(G,v) is called exactly once 
for each node v. 



Pre- and post-visit numbers 
procedure explore(G,v) 
visited[v] = true 
previsit(v) 
for each edge (v,u) in E: 
 if not visited[u]: 
  explore(G,u) 
postvisit(v) 

procedure dfs(G) 
for all v in V: 
 visited[v] = false 
for all v in V: 
 if not visited[v]: 
  explore(G,v) 

procedure previsit(v) 
pre[v] = clock++ 
procedure postvisit(v) 
post[v] = clock++ 

Extra information to record: 
pre[u]  = time of initial discovery 
post[u]  = time of final departure 
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Undirected DFS: wrap-up 
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Terminology:  
DFS search forest consisting of 
two DFS search trees 

tree edge: traversed by DFS 

back edge: not traversed (led 
to a node already visited) 
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The intervals [pre[u], post[u]] are 
either nested or disjoint. Why? 

[pre[u],post[u]] is the time when 
node u is on the stack. 
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Directed DFS: example 
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procedure explore(G,v) 
visited[v] = true 
previsit(v) 
for each edge (v,u) in E: 
 if not visited[u]: 
  explore(G,u) 
postvisit(v) 

procedure dfs(G) 
for all v in V: 
 visited[v] = false 
for all v in V: 
 if not visited[v]: 
  explore(G,v) 

procedure previsit(v) 
pre[v] = clock++ 
procedure postvisit(v) 
post[v] = clock++ 
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Directed DFS: terminology 
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root 

ancestor 

descendant 

parent 

child 

Four types of edges 

tree edge part of DFS forest 
back edge leads to an ancestor 
forward edge leads to non-child 
  descendant 
cross edge leads to neither 
  descendant nor ancestor 



Directed DFS: example 
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Four types of edges 

tree edge part of DFS forest 
back edge leads to an ancestor 
forward edge leads to non-child 
  descendant 
cross edge leads to neither 
  descendant nor ancestor 



The pre/post signature of ancestors 
1,16 

2,15 

a 

c 

b 

d 

e 

f g 

h 

7,14 3,6 

4,5 8,9 

11,12 

10,13 

Node u is an ancestor of node v 
if and only if 

pre[u] < pre[v] < post[u] 

Why? Because: 
u is an ancestor of v  

if and only if  
u is discovered first  AND 
v is discovered during the 

exploration of u 

Type of edge 
Tree 

Forward 
Back 
Cross 

pre/post criterion for edge (u,v) 
pre[u] < pre[v] < post[v] < post[u] 
pre[u] < pre[v] < post[v] < post[u] 
pre[v] < pre[u] < post[u] < post[v] 
pre[v] < post[v] < pre[u] < post[u] 



Cycles 
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A cycle in a directed graph is a 
circular path 

Graph without cycles: acyclic. 

Claim   A directed graph G has a cycle 
 if and only if  
DFS encounters a back edge. 

(()  Suppose DFS encounters a back 
edge from node v to node u. 
Then G has a cycle consisting of the 
path from u to v in the search tree, plus 
edge (v,u). 

()) Suppose G has a cycle  

Let vi be the first of these nodes to be 
explored; then the rest of them lie in 
the DFS subtree below vi; and (vi-1, vi)  
(or (vk, v0) if i=0) is a back edge. 

How to tell if a directed graph 
is acyclic? 

Linear time algorithm to check acyclicity! 



Directed acyclic graphs (dags) 

For modeling hierarchy, causality, 
temporal dependency,... 

Scheduling problem: 

wake 
up 

shower 

dress 

break- 
fast 

get kids 
ready 

get in 
car 

In what order should tasks be performed? 
If there is a cycle: no hope! 

Topological ordering 

Input: a dag 
Goal: give each node a number so 
that every edge leads from a lower 
number to a higher number (i.e. 
precedence constraints satisfied). 

Solution: 
Run DFS and perform tasks in order of 
decreasing POST numbers. 

Claim In a dag, every edge leads to a 
lower post number. 
Proof: The only edges (u,v) for which 
post[v] > post[u] are back edges. 
And a dag has no back edges! 



DAGs, cont’d 
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wake 
up 

shower 

dress 

break- 
fast 

get kids 
ready 

get in 
car 

A source is a node with no in-edges.  
A sink is a node with no out-edges. 

Claim In a dag, the node with highest 
post number is a source and lowest 
post number is a sink. 

Another algorithm for topological 
ordering: 
- Find a source, output it 
- Delete it from the graph 
- Repeat until graph is empty 



Topological sorting, method 2 

- Find a source, output it 
- Delete it from the graph 
- Repeat until graph is empty 



Topological sorting, method 2 

Justification of correctness Running time analysis 



Connectivity in directed graphs 
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In directed graphs, we say  
 u is connected to v 
if there is a path from u to v AND from 
v to u. 

Partition V into strongly connected 
components. 
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The metagraph 
Shrink each SCC to a meta-node.  
Put an edge from one meta-node to 
another if there is an edge (in the 
same direction) between their 
respective vertices.  

Every directed graph is the DAG of its 
strongly connected components. 

2 source SCCs 
1 sink SCC 

Two-tiered structure of directed graph: 
Top level: DAG, very simple structure 
Finer detail: peek inside one of the 
meta-nodes 



Decomposing a graph into its SCCs 
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Property 1: If the explore subroutine 
is started at node u, it will terminate 
when all nodes reachable from u 
have been visited. 

So: if we start in a sink SCC, we will 
precisely identify that SCC! 

Two problems: 
A.  How to find a node that is 

guaranteed to be in a sink SCC? 
B.  Once we’ve identified a sink 

SCC, how do we continue? 

Problem (A): we can always find a node that is 
guaranteed to be in a source SCC! 



Finding a node in a source SCC 

Property 2: Run DFS on G. The node 
with the highest post number lies in a 
source SCC. 

Follows from: 
Property 3: If C, C’ are SCCs and 
there is an edge from C to C’ then 
the highest post number in C is 
bigger than the highest post number 
in C’. 

Case 1: DFS sees C first 

Suppose DFS first sees node u in C. 
Then it sees all of C’ while exploring u. 
Therefore post[u] is bigger than every 
post number in C’. 

Case 2: DFS sees C’ first 

Suppose DFS first sees node v in C’. 
Then it sees all of C’ while exploring v, 
but none of C.  
Therefore every post number in C’ is 
less than any post number in C. 

The SCCs can be topologically sorted 
by arranging them in decreasing order 
of their highest post numbers. 



Decomposing a graph into its SCCs 
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Property 1: explore(G,u) terminates 
when all nodes reachable from u 
have been visited. 

So: if we start in a sink SCC, we will 
precisely identify that SCC! 
A.  How to find a node that is 

guaranteed to be in a sink SCC? 
B.  Once we’ve identified a sink SCC, 

how do we continue? 

Problem (A) 
We can always find a node that is 
guaranteed to be in a source SCC. 

Reverse graph GR = same as G, with edges 
reversed 
GR  has the same SCCs as G 
Source SCC in GR  = sink SCC in G 

Therefore: run DFS on GR and pick node 
with highest post number; this lies in a sink 
SCC of G. 

Problem (B) 
Identify sink SCC, delete from graph. 
Of the remaining nodes, the one with highest 
post number (in GR) will be in a sink SCC of 
whatever is left of G. 



SCC algorithm 
run DFS on GR 

for v in V, in decreasing order of GR-post numbers: 
 if not visited[v]: 
 explore(G,v) 
 output nodes seen as a SCC 
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G GR 

1,2 3,4 5,20 

6,17 
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Ordering from GR: c,g,f,j,i,h,d,e,b,a 


