Graphs

A cartographer's problem

Graph specified by nodes and edges.

$$
\begin{array}{lll}
\text { node } & = & \text { country } \\
\text { edge } & = & \\
\text { neighbors }
\end{array}
$$

Graph coloring problem: color nodes of graph with as few colors as possible, so that there is no edge between nodes of the same color.

Exam scheduling

The registrar's problem

Schedule final exams:

- use as few time slots as possible
- can't schedule two exams in the same slot if there's a student taking both classes.

This is also graph coloring!
Node = exam
Edge = some student is taking both endpoint-exams
Color $=$ time slot

Graphs, formally

$G=(V, E)$ where
V : vertices/nodes
E: edges

$V=\{1,2,3,4,5\}$
$E=\{\{1,2\},\{2,3\},\{3,4\},\{2,5\},\{4,5\}\}$
Undirected edges: symmetric relationship

Directed graphs
(x, y): edge from x to y
e.g.World wide web node URL edge (u,v) u points to v Billions of nodes and edges!

Social networks

Figure 2 - All nodes within 1 step [direct link] of original suspects

Biological networks

How are graphs stored on a computer?

Adjacency matrix
$\vee \times \vee$ matrix A
$A(i, j)=1$ if (i, j) is in E

Symmetric if G undirected

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Adjacency list

For each node, list of outgoing edges

PRO check for an edge in $\mathrm{O}(1)$ time CON uses up $\mathrm{O}\left(\mathrm{V}^{2}\right)$ space

PRO just O(E) space
CON check for an edge in $\mathrm{O}(\mathrm{V})$ time
PRO easily iterate through node's neighbors

Depth-first search in undirected graphs

What parts of a graph are reachable from a given vertex?

With an adjacency list representation, this is like navigating a maze...

Potential difficulty	Don't go round in circles	Don't miss anything
Classical solution	Piece of chalk to mark visited junctions	Ball of string - leads back to starting point
Cyber-analog	Boolean variable for each vertex: visited or not	STACK

An exploration procedure

Does "explore" work?

```
procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
    if not visited[u]:
        explore(G,u)
```

Does it actually halt?
For any node u, explore (G, u) is called at most once; thereafter visited[u] is set.

Does it visit everything reachable from v ?
Suppose it misses node u reachable from v; we'll derive a contradiction.

Pick any path from v to u, and let z be the last node on the path that was visited.

But w would not have been overlooked during explore(G,z); this is a contradiction.

Alternative proof

```
procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
    if not visited[u]:
    explore(G,u)
```

Does explore(G,v) visit everything reachable from v?

Do a proof by induction.

Undirected connectivity

An undirected graph is connected if there is a path between any pair of nodes.

This graph has 2 connected components.
explore(G, v) returns the connected component containing v.
To explore the rest of the graph, restart explore() elsewhere.

DFS decomposes an undirected graph into its connected components!

```
procedure dfs(G)
for all v in V:
    visited[v] = false
for all v in V:
    if not visited[v]:
            explore(G,v)
```

explore(G,a) explore(G,h)

Running time analysis

```
procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
    if not visited[u]:
        explore(G,u)
procedure dfs(G)
for all v in V:
    visited[v] = false
for all v in v:
    if not visited[v]:
            explore(G,v)
```

How long does dfs(G) take?
explore(G,v) is called exactly once for each node v.

During this call, time $=O(1)+$ time for inner loop

Therefore total time = $\mathrm{O}(\mathrm{V})$ + time for inner loops

During inner loops: each edge is examined twice, once from each endpoint. Therefore $O(E)$.

Total: $\mathrm{O}(\mathrm{V}+\mathrm{E})$, linear in the size of the graph.

Alternative running time analysis

```
procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
    if not visited[u]:
        explore(G,u)
procedure dfs(G)
for all v in V:
    visited[v] = false
for all v in v:
    if not visited[v]:
        explore(G,v)
```

How long does dfs(G) take?
explore(G, v) is called exactly once for each node v.

Pre- and post-visit numbers

```
procedure explore(G,v)
visited[v] = true
previsit(v)
for each edge (v,u) in E:
    if not visited[u]:
        explore(G,u)
postvisit(v)
procedure dfs(G)
for all v in V:
    visited[v] = false
for all v in V:
    if not visited[v]:
        explore(G,V)
```

Extra information to record: pre[u] = time of initial discovery post[u] = time of final departure

```
procedure previsit(v)
pre[v] = clock++
procedure postvisit(v)
post[v] = clock++
```


Undirected DFS: wrap-up

The intervals [pre[u], post[u]] are either nested or disjoint. Why?
[pre[u], post[u]] is the time when node u is on the stack.

15,20

Terminology:
DFS search forest consisting of two DFS search trees
tree edge: traversed by DFS back edge: not traversed (led to a node already visited)

Directed DFS: example

```
procedure explore(G,v)
visited[v] = true
previsit(v)
for each edge (v,u) in E:
    if not visited[u]:
            explore(G,u)
postvisit(v)
procedure dfs(G)
for all v in V:
    visited[v] = false
for all v in V:
    if not visited[v]:
        explore(G,v)
procedure previsit(v)
pre[v] = clock++
procedure postvisit(v)
post[v] = clock++
```


Directed DFS: terminology

Four types of edges

tree edge	part of DFS forest
back edge	leads to an ancestor
forward edge	leads to non-child descendant
cross edge	leads to neither descendant nor ancestor

Directed DFS: example

Four types of edges

tree edge	part of DFS forest
back edge	
forward edge	leads to an ancestor leads to non-child descendant
cross edge	leads to neither descendant nor ancestor

The pre/post signature of ancestors

Node u is an ancestor of node v if and only if

$$
\operatorname{pre}[\mathrm{u}]<\operatorname{pre}[\mathrm{v}]<\operatorname{post}[\mathrm{u}]
$$

Why? Because:
u is an ancestor of v if and only if u is discovered first AND v is discovered during the exploration of u

Type of edge	pre/post criterion for edge (u, v)
Tree	pre[u] < pre[v] < post[v] < post[u]
Forward	pre[u] < pre[v] < post[v] < post[u]
Back	$\operatorname{pre}[\mathrm{v}]$ < $\operatorname{pre}[\mathrm{u}]$ < $\operatorname{post[[u]~<~post[lv]~}$
Cross	pre[v] < post[v] < pre[u] < post[u]

Cycles

A cycle in a directed graph is a circular path $v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k} \rightarrow v_{0}$

Graph without cycles: acyclic. How to tell if a directed graph is acyclic?

Claim A directed graph G has a cycle if and only if
DFS encounters a back edge.
(() Suppose DFS encounters a back edge from node v to node u.
Then G has a cycle consisting of the path from u to v in the search tree, plus edge (v, u).
()) Suppose G has a cycle $v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k} \rightarrow v_{0}$
Let v_{i} be the first of these nodes to be explored; then the rest of them lie in the DFS subtree below v_{i}; and $\left(v_{i-1}, v_{i}\right)$ (or ($\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{0}$) if $\mathrm{i}=0$) is a back edge.

Linear time algorithm to check acyclicity!

Directed acyclic graphs (dags)

For modeling hierarchy, causality, temporal dependency,...

Scheduling problem:

In what order should tasks be performed?
If there is a cycle: no hope!

Topological ordering

Input: a dag
Goal: give each node a number so that every edge leads from a lower number to a higher number (i.e. precedence constraints satisfied).

Solution:
Run DFS and perform tasks in order of decreasing POST numbers.

Claim In a dag, every edge leads to a lower post number.
Proof: The only edges (u, v) for which post[v] > post[u] are back edges. And a dag has no back edges!

DAGs, cont'd

A source is a node with no in-edges. A sink is a node with no out-edges.

Claim In a dag, the node with highest post number is a source and lowest post number is a sink.

Another algorithm for topological ordering:

- Find a source, output it
- Delete it from the graph
- Repeat until graph is empty

Topological sorting, method 2

- Find a source, output it
- Delete it from the graph
- Repeat until graph is empty

Topological sorting, method 2

Justification of correctness
Running time analysis

Connectivity in directed graphs

In directed graphs, we say u is connected to v
if there is a path from u to v AND from v to u .

Partition V into strongly connected components.

The metagraph
Shrink each SCC to a meta-node. Put an edge from one meta-node to another if there is an edge (in the same direction) between their respective vertices.

Every directed graph is the DAG of its strongly connected components.

Two-tiered structure of directed graph: Top level: DAG, very simple structure Finer detail: peek inside one of the meta-nodes

Decomposing a graph into its SCCs

Property 1: If the explore subroutine is started at node u , it will terminate when all nodes reachable from u have been visited.

So: if we start in a sink SCC, we will precisely identify that SCC!

Two problems:
A. How to find a node that is guaranteed to be in a sink SCC?
B. Once we've identified a sink SCC, how do we continue?

Problem (A): we can always find a node that is guaranteed to be in a source SCC!

Finding a node in a source SCC

Property 2: Run DFS on G. The node with the highest post number lies in a source SCC.

Follows from:
Property 3: If C, C' are SCCs and there is an edge from C to C ' then the highest post number in C is bigger than the highest post number in C^{\prime}.

Case 1: DFS sees C first

Suppose DFS first sees node u in C. Then it sees all of C^{\prime} while exploring u. Therefore post[u] is bigger than every post number in C^{\prime}.

Case 2: DFS sees C' first
Suppose DFS first sees node vin C'. Then it sees all of C^{\prime} while exploring v, but none of C.
Therefore every post number in C' is less than any post number in C .

The SCCs can be topologically sorted by arranging them in decreasing order of their highest post numbers.

Decomposing a graph into its SCCs

Property 1: explore(G,u) terminates when all nodes reachable from u have been visited.

So: if we start in a sink SCC, we will precisely identify that SCC!
A. How to find a node that is guaranteed to be in a sink SCC?
B. Once we've identified a sink SCC, how do we continue?

Problem (A)
We can always find a node that is guaranteed to be in a source SCC.

Reverse graph $G^{R}=$ same as G, with edges reversed
G^{R} has the same SCCs as G
Source SCC in $G^{R}=$ sink SCC in G
Therefore: run DFS on G^{R} and pick node with highest post number; this lies in a sink SCC of G.

Problem (B)
Identify sink SCC, delete from graph. Of the remaining nodes, the one with highest post number (in G^{R}) will be in a sink SCC of whatever is left of G.

SCC algorithm

