Graphs

A cartographer’s problem

Gulf of (m' . . .
M NoRrTH : Costa Rica Nicaragua El Salvador Mexico
: Ambergri
Mexico ./(‘7 Jamaica
W o Turneffe Idands L
iz of
AN .y /“% s Caribbean
Guatemala " Sea
) I5*N
Honduras
\K N Providencia I
El Salvidor~—7) " Cais fnmiy
BL \otem | St
C A hlend o
tde :
Pacific Nicaregud o ;:.urm ml:onu
Ocean \ i (Panama) S
. AN r
- }ﬂmi’":'“’m\'\ Panama Honduras Guatemala Belize
Coiba™~" SOUTH
Iand AHERICA
6°N
90°W 8w 84°W 8I*W 78°W

Graph specified by nodes and edges.

node = country
edge — neighbors

Graph coloring problem: color nodes of graph with as few colors as
possible, so that there is no edge between nodes of the same color.

The registrar’s problem

Joff Jefiordls [

Jon Kier | West Mchigan
Steven Johnson | Gret Lakes
Joseph Krebs D:

Derek McDaid Fort Wayns
Brad Mils Lansing

Luis Nontano |Dayten

sarrod Parker |Sauth Bend
ligue Rameez | Groat Lakes
Evan Scribner |South Bend

o [a)

Exam scheduling

[Ssusmoleoy |
31,209ERA, 731 IP, 988

Sebastan_ FL |
Yoatum, TX |62,256€RA, 592 1P, 1388
Paim City, L 140, 183€RA, 226BAA |
Waurn Managas, V2 [5-1,0,66 ERA, 162 BAA
[Samanna OR |7-2,1.22ERA 176BAA |
Lomer, SC [21.289ERA, 282 1P, 37K
Frodiand, 10 |52, 220 ERA, 159 BAA
Kingswile, WO [62.260ERA, 2148
Bidgeport, TX |52, 283 €RA, 4 saves
Bame, ON, Canad |30, 262ERA, 225BM |
osa, AZ 42, 262ERA, 58 11P, 69K
Santo Domingo, DR |63, 445 ERA, 562 IP, 1388
Ossan, IN [42.225€RA, 25 BAA
Fondo Negro, DR 113,037 €RA, 12 saves

New Biitain, CT 12:3.205ERA, 26.11P, 40K_|

ETE T —
forrison, CO 1:265,6 HR_ 24 RB1 S415LG |

Curaoao, Notharands Anties| 204, 5 HR_ 11 REI

o] E m’“— 3 Stats (981 6308
|Lensing Houston, TX , HR_24 REI, 14 oubles |

T
R| +
West Mchigan R Tapeks, K8 1 291.7HR 32 Rt
|Fort Wayne R| Ban, DR 1255, 9HR 37 R8I
|Lansng R Ashevile, NC 1250, 34R 23RBL &R |
Quad Ciios R Owasso, OK 274, 3HR 19 R8I
|South Bend R Richfied, M |.260,2 HR 21 R8I 37 08P |
|Fort Wayne R Brocigort, NY 1276 3HR_ 15 R8I, 367 08P |
Wanny Rodiguez* | Lansing L Chive, Panoma 310, 4 HR_ 37 RB1.19 doubles
|l s R] Estoro, FL |24 w8,
| West Mchigan Canton, OH 273, 15 R8I 13K in 132 AB
syion 64 West Couurbia, 5C 1.267,11 1R, 32 R8I, 47 SLG)
| [Residonce [O3Sutsfmof€308 |
Evon Frey” South Bend L Ecwardsvilo, IL 333,22 R8l, 13 SB. 384 08P,
Charle Kingrey" Quad Clies L6 Kinder, LA 308, 5 HR,_ 32 RBL15 doubles
Ancrew Larbo* | Great Lakes L Newtury Par, CA 1267, 7HR, 41 R8I,14 doubies|
Dens Phips |Dayton R San Podio d Mazors, OR | 251, 4 HR. 20 RBL12 doubies |
Casper Wells West hichigan R[6: Schenactady, NY 207,10 HR, 26 REI_ 15 58

This is also graph coloring!

Node = exam
Edge = some student is taking

Color = time slot

Schedule final exams:
- use as few time slots as possible
- can’t schedule two exams in the

same slot if there’s a student
taking both classes.

both endpoint-exams

Graphs, formally

G = (V,E) where Directed graphs
V: vertices/nodes (x,y): edge fromx toy
E: edges
e e.g.World wide web
e node URL
e edge (u,v) upointstov
© (5) Billions of nodes and edges!

V={1,2,3,4,5}
E ={{1.2}, {2,3}, {34}, {2,5}, {4,5}}

Undirected edges: symmetric
relationship

Social networks

A
&
2i Bin al-Shibh Cole Bombing Suspects
/M ahamed Atta alid Ba' Attash [Khallad]
Craig Raab)
N /P
{ | ~ ahad al Quso
~—R Lynn Goga Abdul Aziz Alomati 1 i
\ Y \ Originaf Al Gaeda Suspects
M 4
L - -
Hamza Alghamdi af Alhazmi lid Almihdhar
|
Saeed Alghamdjy
Ahmed Alnami i
Majed Moged Ahmed Al-Hada

M Flight AA #11 - Crashed into WTC North
| M Flight AA #77 - Crashed into Pentagon
Mohamed Abdi M Flight UA #93 - Crashed in Pennsylvania
W Flight UA #175 - Crashed into WTC South
W Other Associates of Hijackers

Copynght © 2001, Valcis Krebs

Figure 2 - All nodes within 1 step [direct link] of original suspects

Biological networks

How are graphs stored on a computer?

Adjacency matrix Adjacency list
V XV matrix A For each node, list of
A(G,j))= 1if(ij)isinE outgoing edges

O otherwise

Symmetric if G undirected

121
s 2 i34
01 01 0 324
4
00101 L35
0101 0 5214
PRO check for an edge in O(1) time PRO just O(E) space |
CON uses up O(V?2) space CON check for an edge in O(V) time

PRO easily iterate through node’s neighbors

Depth-first search in undirected graphs

What parts of a graph are reachable from a given vertex?

With an adjacency list representation, this is like navigating a maze...

Potential difficulty

Don’t go round in
circles

Don’t miss anything

Classical solution

Piece of chalk to mark
visited junctions

Ball of string — leads
back to starting point

Cyber-analog

Boolean variable for each
vertex: visited or not

STACK

An exploration procedure

procedure explore (G, V)

input: graph G = (V,E); node v in V

output: visited[u] is set to true
for all u reachable from v

visited[v] = true
previsit(v)
for each edge (v,u) 1n E:
i1f not visited[u]:
explore (G, u)

postvisit(v)

Does “explore” work?

procedure explore (G, V) Does it visit everything reachable from v?

visited[v] = true _ _
Suppose it misses node u reachable from v;

for each edge (v,u) in E: , _ o
we’ll derive a contradiction.

if not wvisited[u]:

explore (G, u)

Pick any path from v to u, and let z be the

last node on the path that was visited.

Does it actually halt?

For any node u, explore(G,u) is 0 9 @ Q

called at most once;
thereafter visited[u] is set.

But w would not have been overlooked
during explore(G,z); this is a contradiction.

Alternative proof

procedure explore (G, V)
visited[v] = true
for each edge (v,u) in E:

if not wvisited[u]:

explore (G, u)

Does explore(G,v) visit everything
reachable from v?

Do a proof by induction.

Undirected connectivity

An undirected graph is connected if there

is a path between any pair of nodes. procedure dfs (G)
for all v in V:

visited[v] = false

for all v in V:

@ if not visited[v]:
" explore (G, v)

This graph has 2 connected components. explore(G.a) e explore(G.h)
h
explore(G,v) returns the connected @ 0 O
component containing v. _
To explore the rest of the graph, CD
restart explore() elsewhere. @ @ @ @
DFS decomposes an undirected graph @

into its connected components!

Running time analysis

procedure explore (G, V)

visited[v] = true

for each edge (v,u) 1in E:
if not visited[u]:

explore (G, u)

procedure dfs (G)
for all v in V:
visited[v] = false
for all v in V:
if not visited[v]:

explore (G, v)

How long does dfs(G) take?

explore(G,v) is called exactly once
for each node v.

During this call,
time = O(1) + time for inner loop

Therefore total time =
O(V) + time for inner loops

During inner loops: each edge is
examined twice, once from each
endpoint. Therefore O(E).

Total: O(V+E), linear in the size of
the graph.

Alternative running time analysis

procedure explore (G, V)

visited[v] = true

for each edge (v,u) in E:
if not visited[u]:

explore (G, u)

procedure dfs (G)
for all v in V:
visited[v] = false
for all v in V:
if not visited[v]:

explore (G, v)

How long does dfs(G) take?

explore(G,v) is called exactly once

for each node v.

Pre- and post-visit numbers

procedure explore (G, V) procedure previsit (v)
visited[v] = true pre[v] = clock++
previsit (v) procedure postvisit (v)
for each edge (v,u) 1in E: post[v] = clock++

if not visited[u]:
explore (G, u)

postvisit (v)

procedure dfs (G)

for all v in V:
visited[v] = false
for all v in V:

if not visited[v]: @ ®
explore (G, v) @ o

Extra information to record: .
pre[u] = time of initial discovery © @ @ CD
post[u] = time of final departure

Undirected DFS: wrap-up

®) The intervals [pre[u], post[u]] are
'ﬂ either nested or disjoint. Why?

[pre[u],post[u]] is the time when
node u is on the stack.

15,20
RO,
6 ors ! Terminology:
! e DFS search forest consisting of
| C' two DFS search trees
16,19
>8 M2 @ —— tree edge: traversed by DFS
17,18

_______ back edge: not traversed (led
6.7 to a node already visited)

Directed DFS: example

procedure explore (G, V)

visited[v] = true
previsit (v)
for each edge (v,u) 1in E:

if not visited[u]:

explore (G, u)

postvisit (v)

procedure dfs (G)
for all v in V:
visited[v] = false
for all v in V:
if not visited([Vv]:

explore (G, v)

procedure previsit (v)

pre[v] = clock++

procedure postvisit (v)

post[v] = clock++ 0

Directed DFS: terminology

forward edge

cross edge

Four types of edges
tree edge part of DFS forest
back edge leads to an ancestor

leads to non-child
descendant

leads to neither
descendant nor ancestor

Directed DFS: example

Four types of edges

tree edge part of DFS forest

back edge leads to an ancestor

forward edge leads to non-child
descendant

cross edge leads to neither

descendant nor ancestor

The pre/post signature of ancestors

Node u is an ancestor of node v

if and only if
pre[u] < pre[v] < post[u]

Why? Because:
u is an ancestor of v
if and only if
u is discovered first AND
v is discovered during the
exploration of u

Type of edge

pre/post criterion for edge (u,v)

Tree pre[u] < pre[v] < post[v] < post[u]
Forward pre[u] < pre[v] < post[v] < post[u]
Back pre[v] < pre[u] < post[u] < post[v]
Cross pre[v] < post[v] < pre[u] < post[u]

Cycles

A cycle in a directed graph is a Claim A directed graph G has a cycle
circular path vy = v, == v, =, if and only if

DFS encounters a back edge.

(() Suppose DFS encounters a back
edge from node v to node u.

Then G has a cycle consisting of the
path from u to v in the search tree, plus
Graph without cycles: acyclic. edge (v,u).

How to tell if a directed graph
is acyclic?

()) Suppose G has a cycle

Vo =V 22 Ve TV,
Let v, be the first of these nodes to be
explored; then the rest of them lie in
the DFS subtree below v;; and (v, v;)
(or (v, Vo) if i=0) is a back edge.

Linear time algorithm to check acyclicity!

Directed acyclic graphs (dags)

For modeling hierarchy, causality, Topological ordering
temporal dependency,...
Input. a dag
Scheduling problem: Goal: give each node a number so

that every edge leads from a lower
number to a higher number (i.e.
precedence constraints satisfied).

Solution:
Run DFS and perform tasks in order of
decreasing POST numbers.

Claim In a dag, every edge leads to a
lower post number.
Proof: The only edges (u,v) for which

In what order should tasks be performed? ~ POstlv] > post[u] are back edges.
If there is a cycle: no hope! And a dag has no back edges!

DAGSs, cont'd

A source is a node with no in-edges.
A sink is a node with no out-edges.

Claim In a dag, the node with highest
post number is a source and lowest
post number is a sink.

Another algorithm for topological
ordering:

- Find a source, output it

- Delete it from the graph

- Repeat until graph is empty

Topological sorting, method 2

- Find a source, output it
- Delete it from the graph
- Repeat until graph is empty

Topological sorting, method 2

Justification of correctness Running time analysis

Connectivity in directed graphs

In directed graphs, we say

u is connected to v
if there is a path from u to v AND from
v to u.

Partition V into strongly connected
components.

The metagraph

Shrink each SCC to a meta-node.
Put an edge from one meta-node to
another if there is an edge (in the
same direction) between their
respective vertices.

e @ 2 source SCCs
‘ 1 sink SCC
@efhip—og>

Every directed graph is the DAG of its
strongly connected components.

Two-tiered structure of directed graph:
Top level: DAG, very simple structure
Finer detail: peek inside one of the
meta-nodes

Decomposing a graph into its SCCs

Property 1: If the explore subroutine
is started at node u, it will terminate
when all nodes reachable from u
have been visited.

So: if we start in a sink SCC, we will
precisely identify that SCC!

Two problems:

A. How to find a node that is
guaranteed to be in a sink SCC?

B. Once we'’ve identified a sink
SCC, how do we continue?

Problem (A): we can always find a node that is
guaranteed to be in a source SCC!

Finding a node in a source SCC

Property 2: Run DFS on G. The node
with the highest post number lies in a
source SCC.

Follows from:

Property 3: If C, C’ are SCCs and
there is an edge from C to C’ then
the highest post number in C is
bigger than the highest post number
in C’.

Case 1: DFS sees C first

Suppose DFS first sees node u in C.
Then it sees all of C’ while exploring u.
Therefore post[u] is bigger than every
post number in C’.

Case 2: DFS sees C’ first

Suppose DFS first sees node v in C’.
Then it sees all of C’ while exploring v,
but none of C.

Therefore every post number in C’ is
less than any post number in C.

The SCCs can be topologically sorted
by arranging them in decreasing order
of their highest post numbers.

Decomposing a graph into its SCCs

Property 1: explore(G,u) terminates
when all nodes reachable from u
have been visited.

So: if we start in a sink SCC, we will

precisely identify that SCC!

A. How to find a node that is
guaranteed to be in a sink SCC?

B. Once we've identified a sink SCC,
how do we continue?

Problem (A)

We can always find a node that is
guaranteed to be in a source SCC.

Reverse graph GR = same as G, with edges
reversed

GR has the same SCCs as G

Source SCC in GR =sink SCCin G

Therefore: run DFS on GR and pick node
with highest post number; this lies in a sink
SCC of G.

Problem (B)

|dentify sink SCC, delete from graph.

Of the remaining nodes, the one with highest
post number (in GR) will be in a sink SCC of
whatever is left of G.

SCC algorithm

run DFS on GR
for v in V, in decreasing order of GRf-post numbers:
1f not visited[v]:
explore (G, V)
output nodes seen as a SCC

11,14 8,15 7,16

Ordering from GR: ¢,g,f,j,i,h,d,e,b,a

