
Graphs

Graph specified by nodes and edges.
 node = country
 edge = neighbors

Graph coloring problem: color nodes of graph with as few colors as
possible, so that there is no edge between nodes of the same color.

A cartographer’s problem
Costa Rica

Panama Honduras

Nicaragua Mexico

Guatemala

El Salvador

Belize

1

2

6 4

5 7 3

8

Exam scheduling

This is also graph coloring!
 Node = exam
 Edge = some student is taking
 both endpoint-exams
 Color = time slot

1

2
3

4

5

Schedule final exams:

- use as few time slots as possible

-  can’t schedule two exams in the
same slot if there’s a student
taking both classes.

The registrar’s problem

Graphs, formally

G = (V,E) where
 V: vertices/nodes
 E: edges

V = {1,2,3,4,5}
E = {{1,2}, {2,3}, {3,4}, {2,5}, {4,5}}
Undirected edges: symmetric

relationship

Directed graphs
(x,y): edge from x to y

e.g.World wide web
 node URL
 edge (u,v) u points to v

Billions of nodes and edges! 1

2
3

4

5

Social networks

Biological networks

How are graphs stored on a computer?
Adjacency matrix
V x V matrix A
A(i,j) = 1 if (i,j) is in E
 0 otherwise

Symmetric if G undirected

1

2 3
4

5

Adjacency list

For each node, list of
outgoing edges

PRO check for an edge in O(1) time
CON uses up O(V2) space

1
2

2

3

5
4

1

3

5
4
3

2

4 2
5

PRO just O(E) space
CON check for an edge in O(V) time
PRO easily iterate through node’s neighbors

Depth-first search in undirected graphs

What parts of a graph are reachable from a given vertex?

a

b c

e

d

j

i

h

g

f

With an adjacency list representation, this is like navigating a maze...

Potential difficulty Don’t go round in
circles Don’t miss anything

Classical solution

Cyber-analog

Piece of chalk to mark
visited junctions

Ball of string – leads
back to starting point

Boolean variable for each
vertex: visited or not STACK

An exploration procedure

procedure explore(G,v)

input: graph G = (V,E); node v in V
output: visited[u] is set to true

for all u reachable from v

visited[v] = true
previsit(v)
for each edge (v,u) in E:
 if not visited[u]:
 explore(G,u)
postvisit(v)

a

c d

e

g

f b

explore(G,a):

a

b c

e

d

j

i

h

g

f

Does “explore” work?

procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
 if not visited[u]:
 explore(G,u)

Does it actually halt?

For any node u, explore(G,u) is
called at most once;
thereafter visited[u] is set.

Does it visit everything reachable from v?

Suppose it misses node u reachable from v;
we’ll derive a contradiction.

Pick any path from v to u, and let z be the
last node on the path that was visited.

But w would not have been overlooked
during explore(G,z); this is a contradiction.

v z w u

Alternative proof

procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
 if not visited[u]:
 explore(G,u)

Does explore(G,v) visit everything
reachable from v?

Do a proof by induction.

Undirected connectivity

An undirected graph is connected if there
is a path between any pair of nodes.

This graph has 2 connected components.

procedure dfs(G)
for all v in V:
 visited[v] = false
for all v in V:
 if not visited[v]:
 explore(G,v)

explore(G,v) returns the connected
component containing v.
To explore the rest of the graph,
restart explore() elsewhere.

a

c d

e

g

f b
i

h

j

explore(G,a) explore(G,h)

a

b c

e

d

j

i

h

g

f

DFS decomposes an undirected graph
into its connected components!

Running time analysis

procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
 if not visited[u]:
 explore(G,u)

procedure dfs(G)
for all v in V:
 visited[v] = false
for all v in V:
 if not visited[v]:
 explore(G,v)

How long does dfs(G) take?

explore(G,v) is called exactly once
for each node v.

During this call,
time = O(1) + time for inner loop

Therefore total time =
O(V) + time for inner loops

During inner loops: each edge is
examined twice, once from each
endpoint. Therefore O(E).

Total: O(V+E), linear in the size of
the graph.

Alternative running time analysis

procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
 if not visited[u]:
 explore(G,u)

procedure dfs(G)
for all v in V:
 visited[v] = false
for all v in V:
 if not visited[v]:
 explore(G,v)

How long does dfs(G) take?

explore(G,v) is called exactly once
for each node v.

Pre- and post-visit numbers
procedure explore(G,v)
visited[v] = true
previsit(v)
for each edge (v,u) in E:
 if not visited[u]:
 explore(G,u)
postvisit(v)

procedure dfs(G)
for all v in V:
 visited[v] = false
for all v in V:
 if not visited[v]:
 explore(G,v)

procedure previsit(v)
pre[v] = clock++
procedure postvisit(v)
post[v] = clock++

Extra information to record:
pre[u] = time of initial discovery
post[u] = time of final departure

a

b c

e

d

j

i

h

g

f

a

c d

e

g

f b
i

h

j

Undirected DFS: wrap-up

a

c d

e

g

f b
i

h

j

Terminology:
DFS search forest consisting of
two DFS search trees

tree edge: traversed by DFS

back edge: not traversed (led
to a node already visited)

1,14

2,9

3,4

6,7

5,8

10,13

11,12

15,20

17,18

16,19

The intervals [pre[u], post[u]] are
either nested or disjoint. Why?

[pre[u],post[u]] is the time when
node u is on the stack.

a

b c

e

d

j

i

h

g

f

Directed DFS: example

a

b

c e

d h

g

f

procedure explore(G,v)
visited[v] = true
previsit(v)
for each edge (v,u) in E:
 if not visited[u]:
 explore(G,u)
postvisit(v)

procedure dfs(G)
for all v in V:
 visited[v] = false
for all v in V:
 if not visited[v]:
 explore(G,v)

procedure previsit(v)
pre[v] = clock++
procedure postvisit(v)
post[v] = clock++

a

c

b

d

e

f g

h

Directed DFS: terminology

a

b

c e

d h

g

f

a

c

b

d

e

f g

h

root

ancestor

descendant

parent

child

Four types of edges

tree edge part of DFS forest
back edge leads to an ancestor
forward edge leads to non-child
 descendant
cross edge leads to neither
 descendant nor ancestor

Directed DFS: example

a

b

c e

d h

g

f

Four types of edges

tree edge part of DFS forest
back edge leads to an ancestor
forward edge leads to non-child
 descendant
cross edge leads to neither
 descendant nor ancestor

The pre/post signature of ancestors
1,16

2,15

a

c

b

d

e

f g

h

7,14 3,6

4,5 8,9

11,12

10,13

Node u is an ancestor of node v
if and only if

pre[u] < pre[v] < post[u]

Why? Because:
u is an ancestor of v

if and only if
u is discovered first AND
v is discovered during the

exploration of u

Type of edge
Tree

Forward
Back
Cross

pre/post criterion for edge (u,v)
pre[u] < pre[v] < post[v] < post[u]
pre[u] < pre[v] < post[v] < post[u]
pre[v] < pre[u] < post[u] < post[v]
pre[v] < post[v] < pre[u] < post[u]

Cycles

a

b

c e

d h

g

f

A cycle in a directed graph is a
circular path

Graph without cycles: acyclic.

Claim A directed graph G has a cycle
 if and only if
DFS encounters a back edge.

(() Suppose DFS encounters a back
edge from node v to node u.
Then G has a cycle consisting of the
path from u to v in the search tree, plus
edge (v,u).

()) Suppose G has a cycle

Let vi be the first of these nodes to be
explored; then the rest of them lie in
the DFS subtree below vi; and (vi-1, vi)
(or (vk, v0) if i=0) is a back edge.

How to tell if a directed graph
is acyclic?

Linear time algorithm to check acyclicity!

Directed acyclic graphs (dags)

For modeling hierarchy, causality,
temporal dependency,...

Scheduling problem:

wake
up

shower

dress

break-
fast

get kids
ready

get in
car

In what order should tasks be performed?
If there is a cycle: no hope!

Topological ordering

Input: a dag
Goal: give each node a number so
that every edge leads from a lower
number to a higher number (i.e.
precedence constraints satisfied).

Solution:
Run DFS and perform tasks in order of
decreasing POST numbers.

Claim In a dag, every edge leads to a
lower post number.
Proof: The only edges (u,v) for which
post[v] > post[u] are back edges.
And a dag has no back edges!

DAGs, cont’d

11,12

8,9
3,4

1,6
2,5

7,10

wake
up

shower

dress

break-
fast

get kids
ready

get in
car

A source is a node with no in-edges.
A sink is a node with no out-edges.

Claim In a dag, the node with highest
post number is a source and lowest
post number is a sink.

Another algorithm for topological
ordering:
- Find a source, output it
- Delete it from the graph
- Repeat until graph is empty

Topological sorting, method 2

- Find a source, output it
- Delete it from the graph
- Repeat until graph is empty

Topological sorting, method 2

Justification of correctness Running time analysis

Connectivity in directed graphs

a

j i h

g f e d

c b

In directed graphs, we say
 u is connected to v
if there is a path from u to v AND from
v to u.

Partition V into strongly connected
components.

a b

cg defhij

The metagraph
Shrink each SCC to a meta-node.
Put an edge from one meta-node to
another if there is an edge (in the
same direction) between their
respective vertices.

Every directed graph is the DAG of its
strongly connected components.

2 source SCCs
1 sink SCC

Two-tiered structure of directed graph:
Top level: DAG, very simple structure
Finer detail: peek inside one of the
meta-nodes

Decomposing a graph into its SCCs

a

j i h

g f e d

c b

Property 1: If the explore subroutine
is started at node u, it will terminate
when all nodes reachable from u
have been visited.

So: if we start in a sink SCC, we will
precisely identify that SCC!

Two problems:
A.  How to find a node that is

guaranteed to be in a sink SCC?
B.  Once we’ve identified a sink

SCC, how do we continue?

Problem (A): we can always find a node that is
guaranteed to be in a source SCC!

Finding a node in a source SCC

Property 2: Run DFS on G. The node
with the highest post number lies in a
source SCC.

Follows from:
Property 3: If C, C’ are SCCs and
there is an edge from C to C’ then
the highest post number in C is
bigger than the highest post number
in C’.

Case 1: DFS sees C first

Suppose DFS first sees node u in C.
Then it sees all of C’ while exploring u.
Therefore post[u] is bigger than every
post number in C’.

Case 2: DFS sees C’ first

Suppose DFS first sees node v in C’.
Then it sees all of C’ while exploring v,
but none of C.
Therefore every post number in C’ is
less than any post number in C.

The SCCs can be topologically sorted
by arranging them in decreasing order
of their highest post numbers.

Decomposing a graph into its SCCs

a

j i h

g f e d

c b

Property 1: explore(G,u) terminates
when all nodes reachable from u
have been visited.

So: if we start in a sink SCC, we will
precisely identify that SCC!
A.  How to find a node that is

guaranteed to be in a sink SCC?
B.  Once we’ve identified a sink SCC,

how do we continue?

Problem (A)
We can always find a node that is
guaranteed to be in a source SCC.

Reverse graph GR = same as G, with edges
reversed
GR has the same SCCs as G
Source SCC in GR = sink SCC in G

Therefore: run DFS on GR and pick node
with highest post number; this lies in a sink
SCC of G.

Problem (B)
Identify sink SCC, delete from graph.
Of the remaining nodes, the one with highest
post number (in GR) will be in a sink SCC of
whatever is left of G.

SCC algorithm
run DFS on GR

for v in V, in decreasing order of GR-post numbers:
 if not visited[v]:
 explore(G,v)
 output nodes seen as a SCC

a

j i h

g f e d

c b a

j i h

g f e d

c b

G GR

1,2 3,4 5,20

6,17

7,16 8,15

9,10

11,14

12,13

18,19

Ordering from GR: c,g,f,j,i,h,d,e,b,a

