Course: CS 4803/8803 (Spring’08) - Homework 2

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Office Hours: Wed. Fri. 4:30-5:30pm, and by appointment

Due: next Wednesday

Problem 1. [Problem A.17] from the Appendix of Ron Roth's book.
Problem 2. Show that the number of distinct generator matrices of a linear $[n, k, d]$ code over the finite field $F=G F(2)$ is $\prod_{i=0}^{k-1}\left(2^{k}-2^{i}\right)$.

Hint. First show that the sought number equals the number of $k \times k$ nonsingular matrices over F.

Problem 3. [Problem 2.4] Let $\left(a_{1} a_{2} \cdots a_{k}\right)$ be a nonzero vector over the finite field $F=$ $G F(q)$ and consider the mapping $f: F^{k} \rightarrow F$ defined by $f\left(x_{1}, x_{2}, \cdots, x_{k}\right)=\sum_{i=1}^{k} a_{i} x_{i}$. Show that each element of F is the image under f of exactly q^{k-1} vectors in F^{k}. (If you are not comfortable with $G F(q)$ for general q yet, just solve for $q=2$.)

Problem 4. [Problem 2.5] Show that in every linear code $F=G F(2)$, either all codewords have even Hamming weight or exactly half of the codewords have even Hamming weight.

Hint. Let G be the $n \times k$ generator matrix; i.e. the code is $\mathcal{C}=\left\{G x: x \in F^{k}\right\}$. See when Problem 3 above can be applied to the mapping $F^{k} \rightarrow F$ that is defined by $\mathbf{x} \rightarrow(11 \cdots 1) G \mathbf{x}$.

Problem 5. [Problem 2.6] Let \mathcal{C} be a linear $[n, k, d]$ code over $F=G F(q)$ and let T be a $q^{k} \times n$ array whose rows are the codewords of \mathcal{C}. Show that each element of F appears in every nonzero column in T exactly q^{k-1} times.

Hint. Use Problem 3 above. Will discuss in class.

Problem 6. [Problem 2.8] Let G be a generator matrix of a linear code $\mathcal{C} \neq\{\mathbf{0}\}$ over a field F. Show that the minimum distance of \mathcal{C} is the largest integer d such that every $(n-d+1) \times k$ sub-matrix of G has rank k.

