Course: CS 4803/8803 (Spring'08) – Homework 5

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Office Hours: Wed. Fri. 4:30-5:30pm, and by appointment

Due: Wednesday, April 3rd

All problems are from Ron Roth's textbook.

Problem 1. [Problem 4.6] Show that the minimum distance of a perfect code must be odd.

Problem 2. [Problem 4.7] Let F = GF(q) and let n be a prime such that gcd(n,q) = 1. Denote by e the multiplicative order of (the field integer) \bar{q} in GF(n). (Recall that for a positive integer m, the element $1 + 1 + \cdots + 1$ (m times) in a field F is denoted as the Field integer \bar{m} , where 1 is the identity of the multiplicative group of F.)

(1). Show that there exists a perfect linear [n, k] code over F only if e divides n - k. Hint: Show that n divides $\operatorname{Vol}_q(n, t) - 1$ whenever t < n.

(2) Find all the values of k that satisfy the necessary condition of part (1) in the following two cases:

(a) q = 2 and n = 23. (b) q = 3 and n = 11.

Problem 3. [Problem 4.14] A soccer betting form contains a list of 13 matches. Next to each listed match there are three fill-in boxes which correspond to the following three possible guesses: "first team wins," "second team wins," or "tied match." The bettor checks one box for each match.

Describe a strategy for filling out the *smallest* number of forms so that at least one of the forms contains at least 12 correct guesses. How many forms need to be filled out under this strategy?

Hint: Consider a perfect code of length 13 and minimum distance 3 over GF(3).

Problem 4. [Problem 4.19] The Hamming weight enumerator of a code C is the generating function,

$$W_{\mathcal{C}}(z) = \sum_{i=0}^{n} W_i z^i \,,$$

where W_i equals the number of codewords in \mathcal{C} of Hamming weight *i*.

Let F = GF(q) and consider transmission through a memoryless q-ary symmetric channel with crossover probability p. For a linear [n, k, d] code \mathcal{C} over F, let $\mathcal{D}_{MLD} : F^n \to \mathcal{C}$ be a maximum-likelihood decoder for \mathcal{C} with respect to this channel. Show that the decoding error probability P_{err} of \mathcal{D}_{MLD} is bounded from above by

$$P_{\rm err} \le W_{\mathcal{C}} \left(2\sqrt{p(1-p)/(q-1)} + (p(q-2)/(q-1)) \right) - 1.$$

Hint: Refer to Problem 1.9 done in class and in HW 4.