Course: CS 4803/8803 (Spring’08) - Homework 5

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Office Hours: Wed. Fri. 4:30-5:30pm, and by appointment

Due: Wednesday, April 3rd

All problems are from Ron Roth's textbook.
Problem 1. [Problem 4.6] Show that the minimum distance of a perfect code must be odd.
Problem 2. [Problem 4.7] Let $F=\mathrm{GF}(q)$ and let n be a prime such that $\operatorname{gcd}(n, q)=1$. Denote by e the multiplicative order of (the field integer) \bar{q} in $\operatorname{GF}(n)$. (Recall that for a positive integer m, the element $1+1+\cdots+1$ (m times) in a field F is denoted as the Field integer \bar{m}, where 1 is the identity of the multiplicative group of F.)
(1). Show that there exists a perfect linear $[n, k]$ code over F only if e divides $n-k$.

Hint: Show that n divides $\operatorname{Vol}_{q}(n, t)-1$ whenever $t<n$.
(2) Find all the values of k that satisfy the necessary condition of part (1) in the following two cases:
(a) $q=2$ and $n=23$.
(b) $q=3$ and $n=11$.

Problem 3. [Problem 4.14] A soccer betting form contains a list of 13 matches. Next to each listed match there are three fill-in boxes which correspond to the following three possible guesses: "first team wins," "second team wins," or "tied match." The bettor checks one box for each match.

Describe a strategy for filling out the smallest number of forms so that at least one of the forms contains at least 12 corrrect guesses. How many forms need to be filled out under this strategy?

Hint: Consider a perfect code of length 13 and minimum distance 3 over GF(3).
Problem 4. [Problem 4.19] The Hamming weight enumerator of a code \mathcal{C} is the generating function,

$$
W_{\mathcal{C}}(z)=\sum_{i=0}^{n} W_{i} z^{i}
$$

where W_{i} equals the number of codewords in \mathcal{C} of Hamming weight i.
Let $F=\operatorname{GF}(q)$ and consider transmission through a memoryless q-ary symmetric channel with crossover probability p. For a linear $[n, k, d]$ code \mathcal{C} over F, let $\mathcal{D}_{\text {MLD }}: F^{n} \rightarrow \mathcal{C}$ be a maximum-likelihood decoder for \mathcal{C} with respect to this channel. Show that the decoding error probability $P_{\text {err }}$ of $\mathcal{D}_{\text {MLD }}$ is bounded from above by

$$
P_{\mathrm{err}} \leq W_{\mathcal{C}}(2 \sqrt{p(1-p) /(q-1)}+(p(q-2) /(q-1)))-1
$$

Hint: Refer to Problem 1.9 done in class and in HW 4.

