MATH 2601-FoMP
Instructor : Prasad Tetali, office: Skiles 132, email: tetali@math.gatech.edu

Due: Friday (in class), August 31, 2018

Problem 1. Complete the following proof (by contradiction) that there are infinitely many primes of the form $4 k+3$.

Suppose $3=p_{1}, 7=p_{2}, p_{3}, \ldots, p_{n}$ are all the finitely many primes of the form $4 k+3$. Then consider $M=\left(p_{1} p_{2} p_{3} \cdots p_{n}\right)^{2}+2$.
i) Argue that M is of the form $4 k+3$.
ii) Argue that none of the primes p_{i} divides M.
iii) Complete the proof by arriving at a contradiction.

Problem 2. Prove that there are infinitely many primes of the form $3 k+2$.
Problem 3. i) Compute $g:=\operatorname{GCD}(561,25)$ using Euclid's algorithm.
ii) Compute integers x and y so that $561 x+25 y=g$.

Reading Exercise. Read Section 1.1 from Hammack's book.
Additionally, turn in (the solutions to) the following problems from Hammack's book.
Sec.1.1: 16, 22, 28
Sec.1.2: 18, 20

