MATH 2601 - FoMP - Homework 3

Instructor : Prasad Tetali, office: Skiles 132, email: tetali@math.gatech.edu

Due: No need to submit

Note: I will solve some of these problems in class during next week.

Several problems from Hammack's book:

2.7: 4, 8, 9, 10	Ch 4, 4 20 26 28
2.9: 6, 10, 13	Ch. 5. 6 9 19 19 20 24 29
2.10: 4, 6, 8	Cii. 5: 6, 8, 12, 18, 20, 24, 28

Additional exercises

- 1. Describe the following sets using the set builder notation.
 - (a) the set of odd integers
 - (b) the set of rational numbers that may be written with denominator greater than 100
 - (c) the set of rational numbers that may be written with positive denominator less than 4
- 2. Using truth tables, prove that each of the following compound propositions is a tautology.

(a)
$$[p \land (p \Rightarrow q)] \Rightarrow q$$

- (b) $[\sim q \land (p \Rightarrow q)] \Rightarrow \sim p$
- (c) $[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$
- (d) $[(p \lor q) \land \sim p] \Rightarrow q$

These implications are four of the most important "rules of inference" in propositional logic. Each rule gives a conclusion which follows logically from a set of hypotheses. As such, these rules are the building blocks of a correct proof.

- 3. Prove that each of the following propositions is *not* a tautology, with or without using truth tables.
 - (a) $[(p \Rightarrow q) \land q] \Rightarrow p$
 - (b) $[(p \Rightarrow q) \land \sim p] \Rightarrow \sim q$

These implications are common logical fallacies (errors in reasoning) since the conclusion does not follow logically from the set of hypotheses.

- 4. Let $a \in \mathbb{Z}$. Prove that $3 \mid a^2$ if and only if $3 \mid a$. (You may use the fact that every integer can be written as exactly one of 3k, 3k + 1, or 3k + 2 for some integer k.)
- 5. Let a, b, c, d, x and y be integers with $a \neq 0$ and $b \neq 0$.
 - (a) If $a \mid c$, then $a^2 \mid c^2$.
 - (b) If $a \mid c$ and $b \mid d$, then $ab \mid cd$.
 - (c) If $a \mid c$ and $a \mid d$, then $a \mid cx + dy$.
 - (d) If $a \mid b$ and $b \mid a$, then a = b or a = -b.
 - (e) If $a \not\mid cd$, then $a \not\mid c$ and $a \not\mid d$.