MATH 2601-FoMP - Homework 4

Instructor : Prasad Tetali, office: Skiles 132, email: tetali@math.gatech.edu

Due: Wednesday, October 3, in class

Problem 1. Recall that a tournament is an oriented complete graph and a Hamilton path is a directed path consisting of all the vertices in the graph. Compute the expected number of Hamilton paths in a random tournament on 3 players (vertices) in two ways:
i) Compute the expectation by writing it as a sum of 0-1 random variables and using the linearity of expectation, as done in class.
ii) Now compute the expectation as an average over all possible tournaments: First enumerate the 8 possible (labeled) tournaments on 3 vertices. Write the number of Hamilton paths in each of the tournaments. Take the average.
Problem 2. Determine $R(k, 2)=$? for $k \geq 2$. (Recall that you need to argue both the upper bound and the lower bound.)

Problem 3. Show that $R(4,3) \leq 10$.
Hint: Given an arbitrary Red-Blue coloring of the edges of K_{10}, consider whether vertex v_{1} has at least 6 red edges incident to it or not.
Problem 4. (I will illustrate the following with examples for $k=2,3$ in class). Let $k \geq 2$. Let Ω be a finite set of elements and let $S_{1}, S_{2}, \ldots, S_{m} \subseteq \Omega$ be m subsets, each of cardinality k. We say such a collection of sets admits a proper Red-Blue coloring if there exists an assignment of Red/Blue color to the elements of Ω so that none of the S_{i} is monochromatic. In other words :

$$
\exists \chi: \Omega \rightarrow\{\text { Red, Blue }\}: \forall i \in\{1,2, \ldots, m\}, \exists x, y \in S_{i}, \text { with } \chi(x)=\text { Red and } \chi(y)=\text { Blue. }
$$

Show that whenever $m<2^{n-1}$, such a collection always admits a proper Red-Blue coloring.
Hint: Consider a random Red-Blue coloring and estimate the expected number of monochromatic sets.

Additionally, the following problems from Hammack's book:

> Ch.7: $6,8,18$
> Ch.10: $2,10,24$

Note. For Problem 10.24 above, feel free to use the following identities, which are true for all integers k, n, with $1 \leq k \leq n$:

$$
\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1} \quad \text { and } \quad \sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

