Math 2406 Homework 7

Christopher Martin

(6.4.2) x is an eigenvector of T^2 belonging to λ^2 .

$$T(x) = \lambda x$$

 $T^{2}(x) = T(T(x)) = T(\lambda x) = \lambda T(x) = \lambda(\lambda x) = \lambda^{2}x$

x is an eigenvector of T^n belonging to λ^n .

Induction hypothesis

For
$$n = k$$
, $T^n(x) = \lambda^n x$

Basis: n = 1

 $T^1(x) = \lambda^1 x$ by definition

Step:
$$n = k + 1$$

$$T^{k+1}(x) = T(T^k(x))$$

= $T(\lambda^k x)$ (by induction hypothesis)
= $\lambda^k T(x) = \lambda^k (\lambda x) = \lambda^{k+1} x 1$

x is an eigenvector of P(T) belonging to $P(\lambda)$.

Exercise 1 gives that if x is an eigenvector for T_1 and T_2 , then x is an eigenvector for $aT_1 + bT_2$ belonging to $a\lambda_1 + b\lambda_2$.

This can be trivially extended to conclude that if x is an eigenvector for T_1, T_2, \ldots, T_n , then for some sequence of scalars $\{c_i\}_{i=1}^n$, x is an eigenvector for $\sum_{i=1}^n c_i T_i$ belonging to the eigenvalue $\sum_{i=1}^n c_i \lambda_i$.

Let $T_1, T_2, \ldots, T_n = T, T^2, \ldots, T^n$. This is possible because if x is an eigenvector of T, then x is also an eigenvector for T_k , with eigenvalue λ^k . The summation is now an n-degree polynomial in terms of T.

Let $P(x) = \sum_{i} c_i x^i$. Then x is an eigenvector of $\sum_{i} c_i T^i = P(T)$, belonging to the eigenvalue $\sum_{i} c_i \lambda^i = P(\lambda)$.

Equivalently, Let $P(t) = \sum_{i} c_{i} t^{i}$, poly, in t. Then $P(T) = \sum_{i} c_{i} T^{i}$, where $T^{0} = \Sigma$.

Let ∞ be the eigenvector: $Tx = \lambda x$.

Then $\beta(\tau)[x] = \sum_{i=1}^{\infty} c_i \tau^i(x) = \sum_{i=1}^{\infty} c_i \lambda^i x = (\sum_{i=1}^{\infty} c_i \lambda^i)x$

= p(x).x => x : eigen vector of

P(T) with eigenvalue p(X).

(6.4.6) Suppose, for contradition, T has two distinct eigenvalues λ and μ corresponding to nonzero eigenvectors x and y.

Choose $a \neq 0$ and $b \neq 0$ such that ax + by is nonzero.

Every nonzero element of T is an eigenvector, so ax + by is an eigenvector of T.

Exercise 5 tells us that a=0 or b=0 (contradiction). T does not have two distict eigenvalues.

Let λ be the single eigenvalue of T.

$$\forall x, T(x) = \lambda x = \lambda I(x) \Rightarrow T = \lambda I$$

(6.4.7) Let k_p be the largest i such that the coefficient of t^i in p(t) is nonzero.

Looking for eigenvalues...

$$T(p) = \lambda p$$

$$p(t+1) = \lambda p(t)$$

$$\sum_{i=0}^{k_p} c_i (t+1)^i = \lambda \sum_{i=0}^{k_p} c_i t^i$$
Coefficient of t^{k_p} : $c_k = \lambda c_{k_p}$

If T has an eigenvalue, 1 is its only eigenvalue.

If p is an eigenfunction, then k_p is 0:

$$\begin{split} \sum_{i=0}^{k_p} c_i (t+1)^i &= \sum_{i=0}^{k_p} c_i t^i \\ \sum_{i=0}^{k_p} c_i \sum_{j=0}^i \binom{i}{j} t^{i-j} &= \sum_{i=0}^{k_p} c_i t^i \\ \text{Coefficient of } t^{k_p-1} \colon (c_{k_p})(k_p) + c_{k_p-1} &= c_{k_p-1} \\ c_{k_p} \neq 0, \text{ so } k_p &= 0 \qquad \text{Inste} \ \ \mathcal{C}_{\mathsf{K}_p} \neq \mathsf{o} \ \ \text{, by defin, of } \mathsf{k}_p \, . \end{split}$$
 If p is an eigenfunction of T , then the degree of p is 0 .

Any polynomial p(t) = c, where $c \in \mathbb{R}$, is an eigenfunction corresponding to eigenvalue 1: $T(p) = p(t+1) = c = (1)c = \lambda c = \lambda p(t)$

(6.10.4) det
$$(\lambda I - P_1) = \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} = (\lambda)(\lambda) - (-1)(-1) = \lambda^2 - 1$$

det $(\lambda I - P_2) = \begin{vmatrix} \lambda & i \\ -i & \lambda \end{vmatrix} = (\lambda)(\lambda) - (i)(-i) = \lambda^2 - 1$
det $(\lambda I - P_3) = \begin{vmatrix} \lambda - 1 & 0 \\ 0 & \lambda + 1 \end{vmatrix} = (\lambda - 1)(\lambda + 1) = \lambda^2 - 1$
 $\lambda^2 - 1 = 0 \Rightarrow \lambda = \pm 1$
 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has eigenvalues -1 and 1 if its characteristic polynomial is $\lambda^2 - 1$.
 $(\lambda - a)(\lambda - d) - (b)(c) = \lambda^2 - 1$
 $\lambda^2 - a\lambda - d\lambda + ad - bc = \lambda^2 - 1$
 $\lambda(-a - d) + ad - bc = -1$
Solvable if $a = -d$:
 $-a^2 - bc = -1$
 $a^2 = 1 - bc$

(6.10.8) c.
$$0 = \begin{vmatrix} \lambda & -1 & 0 & 0 \\ -1 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & -1 \\ 0 & 0 & -1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix}$$
$$= [(\lambda)(\lambda) - (-1)(-1)]^2$$
$$= (\lambda + 1)(\lambda + 1)(\lambda - 1)(\lambda - 1)$$
$$\lambda = \pm 1$$
$$d.
$$0 = \begin{vmatrix} \lambda & i & 0 & 0 \\ -i & \lambda & 0 & 0 \\ 0 & 0 & \lambda & i \\ 0 & 0 & -i & \lambda \end{vmatrix} = \begin{vmatrix} \lambda & i \\ -i & \lambda \end{vmatrix} \begin{vmatrix} \lambda & i \\ -i & \lambda \end{vmatrix}$$
$$= [(\lambda)(\lambda) - (i)(-i)]^2$$
$$= (\lambda + 1)(\lambda + 1)(\lambda - 1)(\lambda - 1)$$
$$\lambda = \pm 1$$
$$e.
$$0 = \begin{vmatrix} \lambda - 1 & 0 & 0 & 0 \\ 0 & \lambda + 1 & 0 & 0 \\ 0 & 0 & \lambda - 1 & 0 \\ 0 & 0 & 0 & \lambda + 1 \end{vmatrix}$$
$$= (\lambda - 1)(\lambda + 1)(\lambda - 1)(\lambda + 1)$$
$$\lambda = \pm 1$$$$$$

(6.10.13) Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$p_A(\lambda) = \begin{vmatrix} \lambda - a & -b \\ -c & \lambda - d \end{vmatrix}$$
$$= (\lambda - a)(\lambda - d) - (-b)(-c)$$
$$= \lambda^2 - (a + d)\lambda + (ad - bc)$$
$$= \lambda^2 - (\operatorname{tr} A)\lambda + (\det A)$$

$$p_B(\lambda) = \lambda^2 - (\operatorname{tr} B) \lambda + (\det B)$$

If $\operatorname{tr} A = \operatorname{tr} B$ and $\det A = \det B$, then:

$$p_B(\lambda) = \lambda^2 - (\operatorname{tr} A) \lambda + (\det A) = p_A(\lambda)$$

Counterexample for n = 3:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 1 \\ 2 & 0 & -1 \end{bmatrix}$$

$$\operatorname{tr} A = \operatorname{tr} B = 3$$

$$\det B = 1 \begin{vmatrix} 3 & 1 \\ 0 & -1 \end{vmatrix} + 2 \begin{vmatrix} 0 & 1 \\ 2 & -1 \end{vmatrix} + 0 = 1(-3) - 2(-2) = 1 = \det A$$

$$p_{A} = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^{3}$$
$$= \lambda^{3} - 3\lambda^{2} + 3\lambda - 1$$

$$p_{B} = \begin{vmatrix} \lambda - 1 & -2 & 0 \\ 0 & \lambda - 3 & -1 \\ -2 & 0 & \lambda + 1 \end{vmatrix} = (\lambda - 1)(\lambda - 3)(\lambda + 1) + (-2)(-1)(-2)$$
$$= (\lambda^{2} - 1)(\lambda - 3) - 4$$
$$= \lambda^{3} - 3\lambda^{2} - \lambda - 1$$