Math 2406B (Fall 08) - TEST 1 (September 15, 2008)

Instructor : Prasad Tetali, office: Skiles 234, ph: 404-894-9238
Webpage: http://www.math.gatech.edu/~tetali email: tetali@math.gatech.edu

Closed Book, Closed Notes; single 2-sided help sheet allowed Please EXPLAIN All Answers. No Calculators Allowed

Time : 50 minutes Total Points : $10+10+10=30$

1. (5+5 points) Let $\mathcal{P}=\{p(x)$: polynomial in $x\}$ denote the set of polynomials in x of arbitrary degree. Let $D: \mathcal{P} \rightarrow \mathcal{P}$ be the map that takes a polynomial $p(x)=\sum_{i=0}^{k} a_{i} x^{i}$ to the polynomial $D(p(x))=\sum_{i=1}^{k} a_{i} i x^{i-1}$. (In other words, $D: \mathcal{P} \rightarrow \mathcal{P}$ is the differentiation operator from calculus.)
(a) Is D an injection?
(b) Is D a surjection (onto)?

Solution.

2. (5+5 points) Let $V=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in \mathbf{R}\right\}$. Define vector addition and scalar multiplication as follows. Determine in each case whether V is a linear space over \mathbf{R} ? If not, show at least one axiom that does not hold:
(a) for $A=\left(a_{1}, a_{2}\right), B=\left(b_{1}, b_{2}\right)$, and $c \in \mathbf{R}$,

$$
A+B=\left(a_{1}+b_{1}, a_{2} b_{2}\right), \quad \text { and } \quad c A=\left(c a_{1}, a_{2}\right) .
$$

(b) for $A=\left(a_{1}, a_{2}\right), B=\left(b_{1}, b_{2}\right)$, and $c \in \mathbf{R}$,

$$
A+B=\left(a_{1}+b_{1}, a_{2}+b_{2}\right), \quad \text { and } \quad c A=\left(c a_{1}, 0\right) .
$$

Solution.

3. $(2+2+6$ points) Briefly explain answers, when appropriate.
(a) Define a basis of a linear space. When is a basis orthogonal?

Solution.

(b) Let V be a Euclidean space, with an inner product (\cdot, \cdot). For $\mathbf{x}, \mathbf{y} \in V$, does $(\mathbf{x}, \mathbf{y})=0$ imply that $\mathbf{x}=\mathbf{0}$ or $\mathbf{y}=\mathbf{0}$? Prove or give an example to illustrate the point.

Solution.

(c) In the linear space P_{n} of all polynomials of degree $\leq n$, define the inner product

$$
(f, g)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) g\left(\frac{k}{n}\right)
$$

If $f(t)=t$, find all linear (that is, degree one) polynomials g orthogonal to f.
(If need be, you may use the fact that $\sum_{i=1}^{n} i=n(n+1) / 2$ and that $\left.\sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1) / 6.\right)$

Solution.

Extra Space

