MATH 3012 Applied Combinatorics (Fall'07) – TEST 1 (Solutions)

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Time: 1 hour 25 minutes Total Score: 5 + 10 + 10 + 5 + 10 = 40 pts

1 (5pts). A license plate has 3 letters (from the English alphabet) followed by 3 digits from 0 through 9. How many license plates can be made? (Assume that letters *can not* be repeated, but digits can be repeated.)

Solution. Note that ordering matters, and that letters can not be reused. So it is $26 \times 25 \times 24 \times 10 \times 10 \times 10$.

2 (10pts). If $n \in \mathbf{Z}^+$ and $n \ge 2$, prove that $2^n < \binom{2n}{n} < 4^n$.

Solution. It is simplest to prove by induction on $n \ge 2$.

(---)

Base Case: True, since $2^2 < \binom{4}{2} = 6 < 4^2$. Induction Hypothesis. Assume that for some $n = k, k \ge 2$, the inequalities are true.

Induction Step. Need to prove the case of n = k + 1, namely that $2^{k+1} < \binom{2(k+1)}{k+1} < 4^{k+1}$.

Observe that

$$\binom{2(k+1)}{k+1} = \frac{(2k+2)(2k+1)(2k)!}{(k+1)(k+1)k!k!} = 2\frac{(2k+1)}{(k+1)}\binom{2k}{k} \tag{*}$$

Hence we may say,

$$2^{k+1} = 2 \ 2^k < 2\binom{2k}{k}$$
 by the induction hypothesis
$$\leq 2\frac{(2k+1)}{k+1}\binom{2k}{k}$$
 since $1 \leq \frac{(2k+1)}{(k+1)}$
$$= \binom{(2k+1)}{k+1}$$
 using the observation (*) and
thus proving the first inequality in the induction step

$$= 2\frac{(2k+1)}{(k+1)} \binom{2k}{k}$$
 going back one step
< 4 4^k again, by the induction hypothesis, and since $\frac{(2k+1)}{k+1} < 2$
= 4^{k+1} completing the second inequality in the induction step.

3 (4+6pts). (a) There are *n* distinct men and *M* distinct women, assuming $M \ge n$. In how many ways can we pair them up *simultaneously* (say for ballroom dancing) into man-woman pairs?

Solution. There are M choices for the first man, M - 1 for the second man, etc., giving the answer: $M(M-1)(M-2)\cdots(M-n+1)$.

Another way to arrive at this is by first choosing a subset of n women, and then (as in the sample quiz problem) observing that there are n! ways to match up the n men and the chosen subset of n women. This results in $\binom{M}{n}n!$, which is the same as the above.

(b) There are 2m distinct tennis players, in how many ways can we pair them up *simultaneously* (say for simultaneous tennis matches)?

Solution. There are (2m - 1) ways to choose a partner for the first person, then (2m - 3) for the next person (since two were matched up), etc.

Another way to arrive at the same answer is by the following:

$$\frac{(2m)!}{m!\ 2\times 2\times \cdots \times 2} \; ,$$

where there are m 2's in the product in the denominator. Can you see why?

4 (5pts). Give a combinatorial proof for the following identity, for positive integers, k, m, n. Assume k is less than both m and n.

$$\binom{m+n}{k} = \sum_{i=0}^{k} \binom{m}{i} \binom{n}{k-i}.$$

Solution. Imagine a set of m men and a set of n women, and say we want to choose a subset of k out of the total of m + n of them. There are clearly $\binom{m+n}{k}$ ways to do this. A complicated way to count the same would be to focus on choosing i men and k - i women for a fixed i (for $0 \le i \le k$), and then summing over i. The RHS of the equation corresponds to this count.

5 (10pts). Determine those values of $c \in \mathbb{Z}^+$, $20 \le c \le 25$, for which the (Diophantine) equation 84x + 990y = c has no solution. Determine the solutions for the remaining values of c. (Recall that Diophantine simply means we are looking only for *integer* solutions in x and y.)

Solution (i). Recall that there is a solution if and only if gcd(84, 990) divides c. Since

```
990 = (11)84 + 66

84 = (1)66 + 18

66 = (3)18 + 12

18 = (1)12 + 6

12 = (2)6 + 0.
```

Since the gcd is 6, there is a solution only for c = 24 when c is in the range $20 \le c \le 25$.

(ii). First rewrite the gcd 6 in terms of 990 and 84:

$$6 = 18 - 12 = 18 - [66 - (3) \ 18] = -66 + (4)18$$

= -66 + (4) [84 - 66] = (4) 84 - (5) 66
= (4) 84 - (5)[990 - (11) 84]
= -(5) 990 + (59) 84.
=: 990x_0 + 84y_0.

Now 24 can be written in terms of 990 and 84:

$$24 = 990(4x_0) + 84(4y_0) = 990 \times (-20) + 84 \times 236.$$

Finally, to find *all* solutions, simply add and subtract any multiple of 990×84 to the above solution any number of times. Thus the solutions to 24 = 990X + 84Y can be expressed as: $X = (-20) + k \times 84$, and $Y = 236 - k \times 990$, for k: any integer.