MATH 3012 Applied Combinatorics (Fall'07) - TEST 1 (Solutions)

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Time: 1 hour 25 minutes Total Score: $5+10+10+5+10=40$ pts

1 (5pts). A license plate has 3 letters (from the English alphabet) followed by 3 digits from 0 through 9. How many license plates can be made? (Assume that letters can not be repeated, but digits can be repeated.)

Solution. Note that ordering matters, and that letters can not be reused.
So it is $26 \times 25 \times 24 \times 10 \times 10 \times 10$.
$\mathbf{2}$ (10pts). If $n \in \mathbf{Z}^{+}$and $n \geq 2$, prove that $2^{n}<\binom{2 n}{n}<4^{n}$.
Solution. It is simplest to prove by induction on $n \geq 2$.
Base Case: True, since $2^{2}<\binom{4}{2}=6<4^{2}$.
Induction Hypothesis. Assume that for some $n=k, k \geq 2$, the inequalities are true.
Induction Step. Need to prove the case of $n=k+1$, namely that $2^{k+1}<\binom{2(k+1)}{k+1}<4^{k+1}$.
Observe that

$$
\begin{equation*}
\binom{2(k+1)}{k+1}=\frac{(2 k+2)(2 k+1)(2 k)!}{(k+1)(k+1) k!k!}=2 \frac{(2 k+1)}{(k+1)}\binom{2 k}{k} \tag{*}
\end{equation*}
$$

Hence we may say,

$$
\begin{aligned}
2^{k+1}=22^{k} & <2\binom{2 k}{k} \quad \text { by the induction hypothesis } \\
& \leq 2 \frac{(2 k+1)}{k+1}\binom{2 k}{k} \quad \text { since } 1 \leq \frac{(2 k+1)}{(k+1)} \\
& =\binom{(2 k+1)}{k+1} \quad \text { using the observation }\left(^{*}\right) \text { and } \\
& =2 \frac{(2 k+1)}{(k+1)}\binom{2 k}{k} \quad \text { thus proving the first inequality in the induction step } \\
& <44^{k} \quad \text { again, by the induction hypothesis, and since } \frac{(2 k+1)}{k+1}<2 \\
& =4^{k+1} \quad \text { completing the second inequality in the induction step. }
\end{aligned}
$$

3 (4+6pts). (a) There are n distinct men and M distinct women, assuming $M \geq n$. In how many ways can we pair them up simultaneously (say for ballroom dancing) into man-woman pairs?

Solution. There are M choices for the first man, $M-1$ for the second man, etc., giving the answer: $M(M-1)(M-2) \cdots(M-n+1)$.

Another way to arrive at this is by first choosing a subset of n women, and then (as in the sample quiz problem) observing that there are n ! ways to match up the n men and the chosen subset of n women. This results in $\binom{M}{n} n$!, which is the same as the above.
(b) There are $2 m$ distinct tennis players, in how many ways can we pair them up simultaneously (say for simultaneous tennis matches)?

Solution. There are $(2 m-1)$ ways to choose a partner for the first person, then $(2 m-3)$ for the next person (since two were matched up), etc.

Another way to arrive at the same answer is by the following:

$$
\frac{(2 m)!}{m!2 \times 2 \times \cdots \times 2}
$$

where there are $m 2$'s in the product in the denominator. Can you see why?

4 (5pts). Give a combinatorial proof for the following identity, for positive integers, k, m, n. Assume k is less than both m and n.

$$
\binom{m+n}{k}=\sum_{i=0}^{k}\binom{m}{i}\binom{n}{k-i} .
$$

Solution. Imagine a set of m men and a set of n women, and say we want to choose a subset of k out of the total of $m+n$ of them. There are clearly $\binom{m+n}{k}$ ways to do this. A complicated way to count the same would be to focus on choosing i men and $k-i$ women for a fixed i (for $0 \leq i \leq k$), and then summing over i. The RHS of the equation corresponds to this count.

5 (10pts). Determine those values of $c \in \mathbf{Z}^{+}, 20 \leq c \leq 25$, for which the (Diophantine) equation $84 x+990 y=c$ has no solution. Determine the solutions for the remaining values of c. (Recall that Diophantine simply means we are looking only for integer solutions in x and y.)

Solution (i). Recall that there is a solution if and only if $\operatorname{gcd}(84,990)$ divides c. Since

$$
\begin{aligned}
990 & =(11) 84+66 \\
84 & =(1) 66+18 \\
66 & =(3) 18+12 \\
18 & =(1) 12+6 \\
12 & =(2) 6+0
\end{aligned}
$$

Since the gcd is 6 , there is a solution only for $c=24$ when c is in the range $20 \leq c \leq 25$.
(ii). First rewrite the gcd 6 in terms of 990 and 84:

$$
\begin{aligned}
6=18-12 & =18-[66-(3) 18]=-66+(4) 18 \\
& =-66+(4)[84-66]=(4) 84-(5) 66 \\
& =(4) 84-(5)[990-(11) 84] \\
& =-(5) 990+(59) 84 . \\
& =: 990 x_{0}+84 y_{0} .
\end{aligned}
$$

Now 24 can be written in terms of 990 and 84:

$$
\mathbf{2 4}=990\left(4 x_{0}\right)+84\left(4 y_{0}\right)=\mathbf{9 9 0} \times(-20)+\mathbf{8 4} \times 236 .
$$

Finally, to find all solutions, simply add and subtract any multiple of 990×84 to the above solution any number of times. Thus the solutions to $24=990 X+84 Y$ can be expressed as: $X=(-20)+k \times 84$, and $Y=236-k \times 990$, for k : any integer.

