MATH 3012 Applied Combinatorics (Fall'07) - Quiz 2

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu

Name: Prasad Tetali

Time: 40 minutes \quad Score: $6+6+8=20$ points

1. Let \mathcal{R} denote the set of real numbers. Is the function $f: \mathcal{R} \rightarrow \mathcal{R}$ defined as $f(x)=2 x^{2}-x$, onto? Is it one-to-one? Explain.

Solution. Given any $y \in \mathcal{R}$, we want an $x \in \mathcal{R}$ such that $2 x^{2}-x=y$. Choose $y=-1$, then we want a real solution to $2 x^{2}-x+1=0$. But this quadratic equations has the solutions, $x=(1 \pm \sqrt{1-8}) / 4$, which are complex numbers. Thus the function is not onto.

More generally, for any $y \in \mathcal{R}$, the quadratic equation has the solutions, $x=(1 \pm$ $\sqrt{1+8 y}) / 4$, which are complex, if $1+8 y<0$. Thus the range of f is only those y which satisfy $1+8 y \geq 0$, i.e., $y \geq-1 / 8$.
2. (a) If we have an injection (i.e., one-to-one function) f from a set A to a set B, what can we say about the relative sizes of A and B ? What if there is a bijection instead?

Solution. If $f: A \rightarrow B$ one-to-one then $|A| \leq|B|$. If f is a bijection, then $|A|=|B|$.
(b) State the inclusion-exclusion principle for counting the size of the union of four sets.

Let $A_{1}, A_{2}, A_{3}, A_{4}$ be the four sets. Then

$$
\left|\cup_{i=1}^{4} A_{i}\right|=\sum_{i=1}^{4}\left|A_{i}\right|-\sum_{1 \leq i<j \leq 4}\left|A_{i} \cap A_{j}\right|+\sum_{1 \leq i<j<k \leq 4}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right| .
$$

(c) How long a sequence of distinct numbers must we have, in order to guarantee that there is always either an increasing subsequence (of numbers) of length $n+1$ or a decreasing subsequence of length $n+1$?

Solution. As we saw in class, the Erdós-Szekeres theorem shows that any sequence of $n^{2}+1$ distinct numbers has the desired property.
3. If a fair die is rolled six times, what is the probability that the sum of the six rolls is 19 ? (Recall that to compute the probability, you need to find out the number of ways of getting a sum of 19 and divide by the total number of outcomes.)

Solution One. First of all the total number of outcomes is 6^{6}, since each roll results in one of six possible outcomes. Thus the probability is $N U M / 6^{6}$, where N is the number of integer solutions to $x_{1}+x_{2}+\cdots+x_{6}=19$, with the restriction that $1 \leq x_{i} \leq 6$, corresponding to the outcome of the i th roll.

Now the problem may be solved using inclusion-exclusion. Let c_{i} be the property that $x_{i} \geq 7$. Then we are interested in counting the positive integer solutions to $N\left(\overline{c_{1}} \overline{c_{2}} \cdots \overline{c_{6}}\right)$.

Note that giving 1 away to each of the x_{i} 's, we reduce the total to 13 . Then the total number of solutions with the property $x_{i} \geq 1$ is $N=\binom{13+6-1}{6-1}=\binom{18}{5}$. The number of solutions where $c_{i} \geq 7$ is $N\left(c_{i}\right)=\binom{(13-6)+6-1}{6-1}=\binom{12}{5}$. The number of solutions where $c_{i}, c_{j} \geq 7$ is $N\left(c_{i} c_{j}\right)=\binom{(13-6-6)+6-1}{6-1}=6$. And $N\left(c_{i} c_{j} c_{k}\right)=0$, since we can not have three rolls be bigger than seven and still have the sum come to 19 .

Hence

$$
N U M=\binom{18}{5}-6\binom{12}{5}+\binom{6}{2} 6 .
$$

Solution Two. This is only a slightly different way to calculate $N U M$ - basically to go ahead and shift the variables so that they range between 0 and 5: We may rewrite the problem as finding the no. of integer solutions to

$$
x_{1}+x_{2}+\cdots+x_{6}=13, \quad \text { with } 0 \leq x_{i} \leq 5 .
$$

Let c_{i} be the property that $x_{i} \geq 6$. Then we are interested in counting the positive integer solutions to $N\left(\overline{c_{1}} \overline{c_{2}} \cdots \overline{c_{6}}\right)$.

Then the total number of solutions with the property $x_{i} \geq 0$ is $N=\binom{13+6-1}{6-1}=\binom{18}{5}$. The number of solutions where $c_{i} \geq 6$ is $N\left(c_{i}\right)=\binom{(13-6)+6-1}{6-1}=\binom{12}{5}$. The number of solutions where $c_{i}, c_{j} \geq 6$ is $N\left(c_{i} c_{j}\right)=\binom{(13-6-6)+6-1}{6-1}=6$. And $N\left(c_{i} c_{j} c_{k}\right)=0$, since we can not have three rolls be bigger than seven and still have the sum come to 19 .

Hence

$$
N U M=\binom{18}{5}-6\binom{12}{5}+\binom{6}{2} 6
$$

and the probability is $N U M / 6^{6}$.

