Math 4022 (Fall 08) - TEST 1 (September 22, 2008)

Instructor : Prasad Tetali, office: Skiles 234, ph: 404-894-9238
Webpage: http://www.math.gatech.edu/~tetali email: tetali@math.gatech.edu

Answer the first THREE in class; bring the fourth to class on Wednesday Please EXPLAIN All Answers. No Calculators Allowed

Time : 50 minutes Total Points : $10+10+5+10=35$

1. ($5+5$ points) (a) Provide a 3 -regular graph with no perfect matching.

Solution.

(b) Find a maximal matching which is not a maximum matching in the Petersen graph:

Solution.

2. (5+5 points) (a) Find the labeled tree which corresponds to the Prüfer code (3, 3, 4, 4).

Solution.

(b) Use the matrix-tree theorem to find the number of spanning trees of the following graph:

Solution.

3. (5 points) Prove that every bipartite graph has a matching of size at least $|E(G)| / \Delta(G)$, where $|E(G)|$ is the number of edges in G, and $\Delta(G)$ is the maximum degree in G.
(Bonus 5 Points). Conclude that every subgraph of $K_{n, n}$ with more than $(k-1) n$ edges has a matching of size at least k.

Solution.

4. (10 points) (The Politically Incorrect Dating Problem.) Show that in a group of m boys and n girls there exist some t boys for whom dates can be found if and only if any subset of the boys (k of them, say) between them know at least $k+t-m$ of the girls. (We are assuming a date is arranged only if boy knows girl.)

Hint 1: Think of the case of $t=m$ first.
Hint 2: Invite additional $m-t$ "very popular" girls who are known to all the boys. Show that at least t boys can find dates in the original situation if and only if all the boys can find dates in the new situation...

Solution.

Extra Space

