Math 4022 (Fall 08) - Test 2 (Friday, Oct. 31st)

Instructor : Prasad Tetali, office: Skiles 234, ph: 404-894-9238
Webpage: http://www.math.gatech.edu/~tetali email: tetali@math.gatech.edu Solve the FIRST THREE now, and bring the REST ON MONDAY to class.

NAME: \qquad
Advisory Remarks: Try to make proofs succinct, clear and complete. The grader or I need to understand your logic, so please try to communicate your explanation well.

1. (12 points) (a) What is the vertex connectivity of the discrete n-cube Q_{n} ?
(b) Does the Petersen graph have an ear decomposition? Explain why or why not.
(c) State the Fan Lemma for k-connected graphs.
(d) Given an s - t network, define mincut and maxflow.
2. ($5+5$ points) (a) Give an example graph which satisfies all three of the following conditions: vertex connectivity 3 , edge connectivity 4 and minimum degree 5 .
(b) Find the maximum flow in the following network.
3. (8 points) (a) Use Menger's theorem $(\kappa(x, y)=\lambda(x, y)$ when $x y \notin E(G))$ to prove König-Egerváry theorem $\left(\alpha^{\prime}(G)=\beta(G)\right.$, when G is bipartite.)

Take-home Part of Test 2

4 (10 points). Let G be a weighted undirected graph, with a nonnegative real as the weight on every edge. Let the value (denoted val) of a spanning tree be the minimum weight of its edges. Let the cap of an edge cut $[S, \bar{S}]$ be the maximum weight of its edges. (For a subset S of vertices, \bar{S} denotes the complement of S.)

Prove that the maximum value of a spanning tree of G equals the minimum cap of an edge cut in G. That is, prove that

$$
\max _{T: \mathrm{Sp} \text {. tree }} \operatorname{val}(T)=\min _{[S: \bar{S}]} \operatorname{cap}([S: \bar{S}]) \text {. }
$$

Hint: Proving max at most min is easy, as has been the case so far, with other theorems. So try that direction first.
$\mathbf{5}$ (10 points). Find the maximum flow in the following network, starting with a zero flow. Show that your flow is optimal by finding a minimu cut of appropriate capacity.

