MATH 4022 (Intro to Graph Theory) Homework 1

Due: Wednesday, Sept. 7, 2016 (in class)

- Instructor: Prasad Tetali, tetali-at-math-dot-gatech-dot-edu; 404-894-9238 (o)
- Class Location and Time: Skiles 268, MW 3:05-4:25pm
- Office hours: Skiles 118B, Monday 4:30-5:30, Tuesday, Friday 2:00-3:00pm

Most of the following problems are from the textbook by Doug West.

1. Let G_{n} be the graph whose vertices are the permutations of $\{1,2, \ldots, n\}$, with two permutations adjacent if they differ by interchanging a pair of adjacent entries. Prove that G_{n} is connected.
2. Determine the values of m and n such the complete bipartite graph $K_{m, n}$ is Eulerian (i.e., contains an Eulerian circuit).
3. Prove that the Ramsey number $R(4,3) \leq 10$. (Hint. You may use that $R(3,3)=6$.)
4. The Petersen graph is the simple graph whose vertices are the 2-element subsets of a 5 -element set and whose edges are the pairs of disjoint 2-element subsets.
(a) Draw the Petersen graph.
(b) Determine whether it is bipartite.
(c) What is the size of the largest independent set in this graph.
(d) Let C be a subset of vertices with the property that every edge of the graph has at least one endpoint in C. What is the size of the smallest (in cardinality) such a C for the Petersen graph?
5. Using the Prüfer correspondence, count the following sets of trees with vertex set [n]
a) the number of trees with 2 leaves.
b) the number of trees with $n-2$ leaves.
6. Let T, T^{\prime} be two spanning trees of a connected graph G. For $e \in E(T)-E\left(T^{\prime}\right)$, prove that there is an edge $e^{\prime} \in E\left(T^{\prime}\right)-E(T)$ such that $T^{\prime}+e-e^{\prime}$ and $T-e+e^{\prime}$ are both spanning trees of G.
7. Use the matrix-tree theorem to prove Cayley's formula.
(Hint. Apply row-reduction operations to make most elements zero, so that the determinant becomes very easy to compute.)
