MATH 4022 (Intro to Graph Theory) Homework 2

Due: Wednesday, Sept. 28, 2016 (in class)

- Instructor: Prasad Tetali, tetali-at-math-dot-gatech-dot-edu; 404-894-9238 (o)
- Class Location and Time: Skiles 268, MW 3:05-4:25pm
- Office hours: Skiles 118B, Monday 4:30-5:30, Tuesday, Friday 2:00-3:00pm

Most of the following problems are from the textbook by Doug West.

1. Let G_{n} be the graph whose vertices are the permutations of $\{1,2, \ldots, n\}$, with two permutations adjacent if they differ by interchanging any pair of entries. Prove that G_{n} is bipartite.

Hint. An inversion in a permutation $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a pair a_{i} and a_{j} such that $i<j$ but $a_{i}>a_{j}$. Consider the bipartition of permutations using the parity (even or odd) of the number of inversions in the permutation.
2. Determine which of the following sequences are graphic - that is, form the degree sequence of a simple graph: i) ($5,5,4,4,2,2,1,1$) ; ii) ($5,5,5,3,2,2,1,1$) ; iii) ($5,5,5,4,2,1,1,1$).
3. Show using induction $n \geq 2$ that every tournament on n vertices has a (directed) Hamilton path. [If a tournament on $(n-1)$ vertices has such a path, it is not difficult to see that it can always be extended to work for the tournament on n vertices.]
4. (A bit tricky) Use the Prüfer correspondence to show that the number of spanning trees of K_{n} which don't use the edge $\{n-1, n\}$ is $(n-2) n^{n-3}$.

Hint. Show that a spanning tree doesn't contain the edge $\{n-1, n\}$ if and only if the Prüfer sequence doesn't end with the label $n-1$ or n. (First observe that n never gets deleted during the construction of the Prüfer sequence.)
5. (Warning: annoyingly, we switch the ordering of the degrees in this exercise.) Show that a simple graph with degree sequence $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ is connected if $d_{k} \geq k$ for all k such that $k \leq n-1-d_{n}$.

Hint. To prove by contradiction, consider the size of the component containing the vertex with degree d_{n}, and that of another component (not connected to this).

```
* * * * Reading Homework * * * *
```

I. Nice application of Eulerian digraphs; you can read about it in Section 1.4 of Doug West's book or in other sources: the notion of de Bruijn sequences/cycles.
There are 2^{n} binary strings of length n. A de Bruijn sequence is a cyclic arrangement of the 2^{n} binary strings such that the 2^{n} strings of n consecutive digits are all distinct! For $n=4$, for example, (0000111101100101) works.

For each $n \geq 2$, the solution comes by constructing a suitable digraph (with equal indegree and outdegree) on the ($n-1$)-tuples and following an Eulerian circuit in such a graph.
II. Useful to know, although doesn't produce a graph, unlike Havel-Hakimi; the Wiki has proof sketches and references for further reading:

Theorem (Erdös-Gallai). A sequence of non-negative integers $d_{1} \geq d_{2} \geq \cdots d_{n}$ is graphic if and only if $\sum_{i=1}^{n} d_{i}$ is even and

$$
\sum_{i=1}^{k} d_{i} \leq k(k-1)+\sum_{i=k+1}^{n} \min \left(d_{i}, k\right)
$$

holds for every $k, 1 \leq k \leq n$.

