MATH 4022 (Intro to Graph Theory) Homework 4

Due: Monday, November 14, 2016 (in class)

- Instructor: Prasad Tetali, tetali-at-math-dot-gatech-dot-edu; 404-894-9238 (o)
- Office hours: Skiles 118B, Monday 4:30-5:30, Tuesday, Friday 2:00-3:00pm

Most of the following problems are from the textbook by Doug West.

1. (Problem 4.1.5) Let G be a connected graph with at least three vertices. Form G^{\prime} from G by adding an edge with endpoints x, y whenever the distance in G between them $d_{G}(x, y)=2$. Prove that G^{\prime} is 2-connected.
2. (Problem 4.1.10) Find the smallest 3 -regular graph with connectivity 1. (Note that it must have a cut-edge.)
3. Problem 4.1.14) Let G be a connected graph in which for every edge e, there are cycles C_{1} and C_{2} containing e whose only common edge is e. Prove that G is 3 -edge-connected. Use this to show that the Petersen graph is 3 -edge-connected.
4. (Problem 4.2.4) Prove or disprove: If P is u, v-path in a 2 -connected graph G, then there is a u, v-path Q internally disjoint from P.
5. (Problem 4.2.8) Prove that a simple graph G is 2-connected, if for every ordered triple (x, y, z) of vertices, G has an x, z path through y. (Use the Fan Lemma.)
6. (Problem 4.2.12) Use Menger's theorem to prove that $\kappa(G)=\kappa^{\prime}(G)$, when the graph G is 3-regular.
7. (Problem 4.2.13) Let G be 2-edge-connected. Define a relation R on the edge set $E(G)$ by $(e, f) \in R$ (that is, e and f are related) if $e=f$ or if $G-e-f$ is disconnected.
a) Prove that $(e, f) \in R$ if and only if e, f belong to the same cycles.
b) Prove that R is an equivalence relation on $E(G)$.
