MATH 4022 (Intro to Graph Theory) Quiz 1

Sept. 14, 2016 (in class, closed book, closed notes); duration: 40 minutes

- Instructor: Prasad Tetali, tetali-at-math-dot-gatech-dot-edu; 404-894-9238 (o)

Please provide a proof whenever appropriate; do not simply write an answer without due explanation or justification. Total score: 30 points.

1. (5 pts) State the matrix-tree theorem.

Answer. Given a graph G, let $Q=D-A$, where D is the diagonal matrix of degrees and A is the adjacency matrix of G. So the diagonal entry $Q_{i i}$ is the degree of the vertex v_{i} and $Q_{i j}=-1$ or 0 , depending on whether vertices v_{i} and v_{j} are adjacent.

Let Q_{i}^{*} be the matrix obtained by removing the i th row and i th column of Q. The matrix-tree theorem asserts that the determinant of Q_{i}^{*} is the number of the spanning trees of G (irrespective of which i we choose).

A more general version removes the i row and the j th column and asserts that the determinant of the matrix thus obtained equals $(-1)^{i+j}$ times the number of spanning trees.
2. (5 pts) What is the most number of edges a bipartite graph can have on n vertices? (No need to prove it.) Is there a graph achieving the bound?

Answer. At most $\lfloor n / 2\rfloor\lceil n / 2\rceil$, and is achieved by a bipartite graph with the n vertices partitioned into the corresponding (nearly equal) numbers of vertices. (This is Mantel's theorem.)
3. $(1+1+3=5 \mathrm{pts})$ For $d \geq 1$, the discrete d-cube is a graph on 2^{d} vertices corresponding to all binary sequences of length d; two vertices in the d-cube are adjacent if they differ in precisely one position. (That is, $u, v \in\{0,1\}^{d}$ are adjacent iff $u_{i} \neq v_{i}$, for some i, and $u_{j}=v_{j}$, for $j \neq i$.)
(a) Draw the 3-cube.

Answer. Easy enough. One way is to draw a small square inside another square and join the corresponding corners with 4 matching edges.
(b) Is the 3-cube bipartite?

Answer. Yes, see below.
(c) Is the d-cube bipartite (for $d \geq 1$)?

Answer. OK, this was not so great as a Quiz question, perhaps better suited for a Test.
Each vertex can be thought of as a binary vector of length d. Consider separting the vertices into the sets V_{1} and V_{2} based on whether the vertex has odd number of 1's (in its vector) or an even number of 1's.

This is a valid bipartition of the vertices with no edge between any two in the same V_{i}, because that would mean that two vertices which differ by a single 1 have the same parity - even or odd number of 1's - which is impossible.
4. $(2+3=5 \mathrm{pts})$ (a) Define the Ramsey number $R(s, t)$ in your own words. (Assume $s, t \geq 2$ are integers.)

Answer. $R(s, t)$ is the smallest n so that no matter how the edges of K_{n} are Red/Blue colored, there exists a K_{s} all of whose edges are Red or a K_{t} all of whose edges are Blue.
(b) Show that $R(4,2)=4$.

Answer. $R(4,2)>3$, since one can color the edges of K_{3} all Red.
$R(4,2) \leq 4$, since if no edge is colored Blue, then all edges must be Red giving a Red K_{4}. Else there is a Blue K_{2}.
5. (5 pts) Compute the Prüfer sequence corresponding to the following spanning tree on 7 vertices: the spanning tree has the edges $(1,2),(3,2),(2,4),(4,7),(4,5)$, and $(5,6)$.

Answer. The order of the removal of leaves is $1,3,2,6$ and 5 . This gives rise to the sequence: $(2,2,4,5,4)$.
6. $(2+3=5 \mathrm{pts})$ (a) What is the sum of the degrees of any tree on n vertices?

Answer. The sum of the degrees equals twice the number of edges, so the answer is $2(n-1)$, since every tree has $n-1$ edges.
(b) Show that every tree has at least two leaves. Hint: You may use (a).

Answer. Note that every vertex must have degree at least 1, otherwise, the graph is not connected. If there was at most one vertex with degree 1 , then the sum of the degrees would be at least $2 \times(n-1)+1$, which is more than what Part (a) dictates. Hence there must be at least two.

