MATH 4022 Intro to Graph Theory (Fall'07) - TEST 2 (Solutions)

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu
Time: 1 hour 25 minutes Total Score: 40 pts

Solve the first three in class. Bring the solution to the FOURTH to class on Wednesday. The fifth problem is OPTIONAL (for extra credit); may bring to class on Wednesday.

Name : Prasad Tetali

1 (10pts). Prove that a simple graph G is 2 -connected if and only if for every triple (x, y, z) of distinct vertices, G has an x, z-path through y. (Recall that an x, z-path is a path between vertices x and z.)

Solution. Suppose G is 2 -connected. Then given x, y, z, we may use the fan lemma with vertex y and set $U=\{x, z\}$. The resulting fan may be viewed as an x, z path which goes through y.

In the other direction, clearly the graph must be connected; moreover, the removal of any single vertex x still leaves the graph $H:=G \backslash\{x\}$ connected : Suppose not. Then consider two vertices y, z from two distinct connected components of H. By the hypothesis in the problem, G contains an x, z path which goes through y. In particular this yields a y, z path which does not involve x (since a path can not repeat vertices), and hence this remains a path y, z path in H. This gives the desired contradiction to the supposition that H is disconnected. We may conclude that G is 2 -connected.
$2(5+5$ pts). (a) Draw a connected graph containing a perfect matching, with vertex connectivity 1 , and with maximum degree 3 .
(b) [Independent of part (a)]. Construct a graph with vertex connectivity 4, edge connectivity 5 and minimum degree 6 .

Solution. (a) Join an edge to a triangle. (For a construction on more vertices, one can repeat the above - by a chain of such triangles, using an edge as a "link," each time.)
(b) This is a special case of a general construction discussed in class: One may start with two disjoint K_{7} 's; choose four vertices from one K_{7} and four vertices from the other, and join the two subsets using five edges, so that the edges span all four vertices from each set. Each to check that this satisfies the requirements.
$\mathbf{3}$ (10pts). Prove that a 3 -regular graph has a perfect matching, if it decomposes into copies of P_{4} (which stands for the 4 -vertex path.)
(Here "decomposes" refers to the edges of the graph being partitioned into.)
Solution. Let n be the number of vertices and m the number of edges in G. Then $m=3 n / 2$, since G is 3 -regular. Thus a P_{4} decomposition of G consists of $n / 2$ edge-disjoint copies, since each copy accounts for 3 edges. Note that the P_{4} 's may share vertices, except that the middle two vertices of a P_{4} can not be shared by other P_{4} 's, since that will create a degree- 4 vertex in G !

Thus the set of middle edges gathered from each P_{4} constitutes a perfect matching.
Incidentally, the converse is also true; a proof will be covered in class.
$\boldsymbol{4}$ (10pts). Find the vertex and edge connectivity of the Petersen graph $\mathbf{P}_{\mathbf{5}}$.
Solution. It is easy to see that $\mathbf{P}_{\mathbf{5}}$ is 3 -regular and has no cut edge. Hence $2 \leq \kappa(G)=$ $\kappa^{\prime}(G) \leq 3$. The graph can be viewed as a disjoint union of two five cycles joined together by a perfect matching. So the removal of any two edges (say) can be seen to leave it connected, by considering a couple of cases. This shows that $\kappa^{\prime}(G)=3$.

5 (EXTRA CREDIT). Prove the a graph with at least four vertices is 2-connected if and only if for every pair X, Y of disjoint vertex subsets with $|X|,|Y| \geq 2$, there exist two completely disjoint paths P_{1}, P_{2} in G such that each has an endpoint in X and an endpoint in Y and no internal vertex in X or Y.

Solution. For both sides, we may use the fact that G is 2 -connected if and only if every pair of edges in G lie on a cycle:

Suppose G is 2-connected. Given disjoint sets X and Y (with size at least two), consider an edge in each of X and Y - include a new edge, if X or Y (or both) lack one, which still retains the 2-connected property. Now the (new) graph will have a cycle containing the two edges. This gives rise to two disjoint paths between X and Y with the above property, by simply taking the last entry/exit vertices from X and Y in the cycle.

For the other direction, suppose G has the disjoint path property for every pair of disjoint subsets of size 2. Given any two disjoint edges, define X and Y to be the endpoints of the two edges to obtain two disjoint paths between X and Y. These yield a cycle containing the edges in X and Y. Since this is true for every pair of edges, G is 2-connected. (We may also prove this via a proof by contradiction: if G has connectivity less than 2 , then either G is disconnected or has a cut vertex. In either case, we get a contradiction to the above disjoint path property, by choosing X and Y appropriately.)

Note that we implicitly used the fact that G has at least four vertices in the above proofs.

