MATH 4022A Test 2, Oct. 19, 2001

Name :
You may turn in solutions to the last problem (for extra credit) on Monday at 10:00 am.

1. $(5+5$ points $)$
(a) Let T be a minimum weight spanning tree in a weighted connected graph G. Prove or disprove that T omits some heaviest edge from every cycle in G.
(b) Find a minimum (weight) spanning tree in the following graph:
2. $(4+6$ points $)$
(a) A line of a matrix is a row or a column of the matrix. Show that the minimum number of lines containing all the 1's of a $(0,1)$-matrix is equal to the maximum number of 1's, no two of which are in the same line.
(b) Let G be a 3-regular graph with at most 2 cutedges. Prove that G has a perfect matching. (Hint: slightly modify the proof shown in class for the case of no cutedges.)
3. (10 points)

Use the König-Egerváry theorem to prove that every bipartite graph G has a matching of size at least $e(G) / \Delta(G)$. Use this to conclude that every subgraph of $K_{n, n}$ with more than $(k-1) n$ edges has a matching of size at least k.
4. (Extra Credit)
(a) Prove that every graph has a matching of size at least $n /(1+\Delta(G))$. (Hint: Use induction on the number of edges of G.)
(b) Let G be an X, Y-bigraph having a matching that saturates X. Let S and T be subsets of X such that $|N(S)|=|S|$ and $|N(T)|=|T|$. Prove that $|N(S \cap T)|=$ $|S \cap T|$.

