Course: MATH 4032 Combinatorial Analysis (Spring'07) Homework 1

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Office Hours: Mon, Wed 11am - noon, Thurs. 10-11:00am

Due: Friday, Jan. 19th

1. Prove the simple case of Erdős-Ko-Rado theorem: if $k=n / 2$, then the number of k-sets in any intersecting family is at most $\frac{1}{2}\binom{n}{k}$.
2. Let $X=\{1,2, \ldots, 7\}$, and let \mathcal{B} be the following family of seven subsets of X :

$$
\mathcal{B}=\{\{1,2,3\},\{1,4,5\},\{1,6,7\},\{2,4,6\},\{2,5,7\},\{3,4,7\},\{3,5,6\}\} .
$$

Then let $\mathcal{F}=\{A \subset X: A$ contains B for some $B \in \mathcal{B}\}$. Show that \mathcal{F} is intersecting and $|\mathcal{F}|=2^{7-1}=64$.
3. Let $G=(V, E)$ be a graph on n vertices and let $t(G)$ be the number of triangles in it. Show that

$$
t(G) \geq \frac{|E|}{3 n}\left(4 \cdot|E|-n^{2}\right)
$$

Sketch: For an edge $e=\{x, y\}$, let $t(e)$ be the number of triangles containing e. Let $B=V \backslash\{x, y\}$. Among the vertices in B there are precisely $t(e)$ vertices which are adjacent to both x and y. Every other vertex in B is adjacent to at most one of these two vertices. We thus obtain $d(x)+d(y)-t(e) \leq n$. Summing over all edges $e=\{x, y\}$ we obtain

$$
\sum_{e \in E}(d(x)+d(y))-\sum_{e \in E} t(e) \leq n \cdot|E| .
$$

Apply the Cauchy-Schwarz inequality to estimate the first sum.
Comment: This implies that a graph on an even number n of vertices with $n^{2} / 4+1$ edges not only contains one triangle (as it must be by Mantel's theorem), but more than $n / 3$.

Optional Problems.

4. Let $G=(V, E)$ be a graph. Let $d(x)$ denote the degree of x, for each $x \in V$. Explain why the following holds:

$$
\sum_{x \in V} d(x)^{2}=\sum_{\{x, y\} \in E}(d(x)+d(y)) .
$$

5. A family of subsets of X is said to be 2-colorable, if it is possible to assign one of two colors (RED and BLUE, say) to the elements of X so that no set in the family is monochromatic - meaning no set should be all RED or all BLUE. Is the family \mathcal{B} in Problem 2 above 2-colorable?
