Course: MATH 4032 Combinatorial Analysis (Spring'07) – Homework 3

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Office Hours: Mon, Wed 11am – noon, Thurs. 2:00 – 3:00pm

Due: No need to turn in

1. Solve $h_n = 5h_{n-1} - 6h_{n-2}$, for $n \ge 2$, using the generating function approach; you may use $h_0 = 1$, $h_1 = -2$, for initial conditions.

2. Determine the exponential generating function for the sequence of factorials: $0!, 1!, 2!, \ldots, n!, \ldots$

3. Solve for h_n using the generating functions (or any other method) $h_n = 3h_{n-2} - 2h_{n-3}$, $(n \ge 3)$; $h_0 = 1, h_1 = h_2 = 0$.

4. Determine the generating function for the sequence of cubes: $0, 1, 8, \ldots, n^3, \ldots$

5. Prove that $R(4,3) \le 10$.

6. Let x_1, x_2, \ldots, x_n be real numbers, $x_i \ge 1$ for each *i*, and let *S* be the set of all numbers, which can be obtained as a linear combination $\alpha_1 x_1 + \cdots + \alpha_n x_n$ with $\alpha_i \in \{+1, -1\}$. Let I = [a, b) be any interval (in the real line) of length b - a = 2. Show that $|I \cap S| \le {n \choose n/2}$.

(*Hint*: Associate with each sum $s = \alpha_1 x_1 + \cdots + \alpha_n x_n$ the corresponding set $A_s = \{i : \alpha_i = +1\}$. Observe that the family of sets A_s , for which $s \in I$, forms an antichain.)

Useful Binomials:

(i)
$$\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$$
.

$$(ii) \quad \frac{1}{(1-rx)^n} = \sum_{k=0}^{\infty} (-1)^k \binom{-n}{k} r^k x^k = \sum_{k=0}^{\infty} \binom{n+k-1}{k} r^k x^k, \quad (|x| < \frac{1}{|r|}).$$