Course: MATH 4032 Combinatorial Analysis (Spring'07) Homework 3

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Office Hours: Mon, Wed 11am - noon, Thurs. 2:00-3:00pm

Due: No need to turn in

1. Solve $h_{n}=5 h_{n-1}-6 h_{n-2}$, for $n \geq 2$, using the generating function approach; you may use $h_{0}=1, h_{1}=-2$, for initial conditions.
2. Determine the exponential generating function for the sequence of factorials: $0!, 1!, 2!, \ldots, n!, \ldots$
3. Solve for h_{n} using the generating functions (or any other method) $h_{n}=3 h_{n-2}-2 h_{n-3}$, $(n \geq 3) ; h_{0}=1, h_{1}=h_{2}=0$.
4. Determine the generating function for the sequence of cubes: $0,1,8, \ldots, n^{3}, \ldots$
5. Prove that $R(4,3) \leq 10$.
6. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers, $x_{i} \geq 1$ for each i, and let S be the set of all numbers, which can be obtained as a linear combination $\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}$ with $\alpha_{i} \in\{+1,-1\}$. Let $I=[a, b)$ be any interval (in the real line) of length $b-a=2$. Show that $|I \cap S| \leq\binom{ n}{n / 2}$.
(Hint: Associate with each sum $s=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}$ the corresponding set $A_{s}=\left\{i: \alpha_{i}=\right.$ $+1\}$. Observe that the family of sets A_{s}, for which $s \in I$, forms an antichain.)

Useful Binomials:

$$
\begin{gathered}
\text { (i) }\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k} . \\
\text { (ii) } \frac{1}{(1-r x)^{n}}=\sum_{k=0}^{\infty}(-1)^{k}\binom{-n}{k} r^{k} x^{k}=\sum_{k=0}^{\infty}\binom{n+k-1}{k} r^{k} x^{k}, \quad\left(|x|<\frac{1}{|r|}\right) .
\end{gathered}
$$

