MATH 4032 Combinatorial Analysis (SPR'07) - Homework 7

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu
Office Hours: Mon. Wed. 11-12, Thurs. 1:30-2:30pm

Due: next Monday

1. Prove that in every 3 -coloring of the edges of K_{17}, there is a monochromatic triangle. Hint: Argue as in the proof of $R(3,3) \leq 6$.
2. Prove that for all integers $r \geq 1$, there is a minimal number $N(r)$ with the following property. If $n \geq N(r)$ and the integers in $\{1,2, \ldots, n\}$ are colored with r colors, then there are three elements x, y, z (not necessarily distinct) with the same color $x+y=z$.

Hint: Take $\{1,2, \ldots, n\}$ as the vertex set, and color each edge $\{i, j\}$ using the color of $|i-j|$. Appropriate Ramsey theorem tells us that there is a triangle whose edges all get the same color. So ...?
3. Let $W(r, k)$ be the least number n such that any coloring of $\{1,2, \ldots, n\}$ using r colors gives a monochromatic k-term arithmetic progression. Provide a lower bound for $W(r, k)$, for general $r \geq 2$, using the Lovász local lemma. Compare your bounds with the ones obtained using the basic probabilistic method.
4. Recall that a clause is an Or of literals, where each literal is a boolean variable x_{i} or its negation \bar{x}_{i}. Let $C_{1}, C_{2}, \ldots, C_{m}$ be a collection of clauses, each consisting of k literals, and such that every variable appears (negated or not) in at most r clauses. Assume that $r<$ $2^{k-2} / k$. Prove that then there is an assignment which satisfies all the clauses $C_{1}, C_{2}, \ldots, C_{m}$.
5. Prove that $R(t, t) \leq\binom{ 2 t-2}{t-1}$.

Hint: Use the upper bound $R(s, t) \leq R(s-1, t)+R(s, t-1)$.

