MATH 4032 Combinatorial Analysis (SPR'07) – Homework 7

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Office Hours: Mon. Wed. 11–12, Thurs. 1:30–2:30pm

Due: next Monday

1. Prove that in every 3-coloring of the edges of K_{17} , there is a monochromatic triangle. *Hint*: Argue as in the proof of $R(3,3) \leq 6$.

2. Prove that for all integers $r \ge 1$, there is a minimal number N(r) with the following property. If $n \ge N(r)$ and the integers in $\{1, 2, ..., n\}$ are colored with r colors, then there are three elements x, y, z (not necessarily distinct) with the same color x + y = z.

Hint: Take $\{1, 2, ..., n\}$ as the vertex set, and color each edge $\{i, j\}$ using the color of |i - j|. Appropriate Ramsey theorem tells us that there is a triangle whose edges all get the same color. So ...?

3. Let W(r, k) be the least number n such that any coloring of $\{1, 2, ..., n\}$ using r colors gives a monochromatic k-term arithmetic progression. Provide a lower bound for W(r, k), for general $r \ge 2$, using the Lovász local lemma. Compare your bounds with the ones obtained using the basic probabilistic method.

4. Recall that a *clause* is an Or of literals, where each literal is a boolean variable x_i or its negation \bar{x}_i . Let C_1, C_2, \ldots, C_m be a collection of clauses, each consisting of k literals, and such that every variable appears (negated or not) in at most r clauses. Assume that $r < 2^{k-2}/k$. Prove that then there is an assignment which satisfies all the clauses C_1, C_2, \ldots, C_m .

5. Prove that $R(t,t) \leq \binom{2t-2}{t-1}$. Hint: Use the upper bound $R(s,t) \leq R(s-1,t) + R(s,t-1)$.