Name: \qquad
Math 4150 - Introduction to Number Theory
Spring 2010

$$
\text { Test \# } 1 \text { (Make-up) }
$$

You have 50 minutes to take this test. There are 52 total points possible. Simple calculators are fine, but no programmable calculators are allowed. Please write your answers neatly and show all of your work. Feel free to write on both sides of each sheet.

1. $(6+6+5=17$ points) Answer each of the following with one or two sentences of explanation.
a. If $a b \equiv a c(\bmod n)$ then $b \equiv c(\bmod n)$. True or False?

If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ then $a d \equiv b c(\bmod n)$. True or False?
b. Let p be prime and a, m and n be positive integers. Suppose $m \equiv n$ $(\bmod p-1)$. Then explain why $a^{m} \equiv a^{n}(\bmod p)$.
c. For large positive integer n, roughly how many integers between 1 and n are prime numbers?
2. (10 points) Show that there are infinitely many primes of the form $6 k+5$.
3. $(5+10=15$ points)
a. State the Chinese Remainder Theorem.
b. What is the smallest number of lobsters in a tank if 1 lobster is left over when they are removed $2,3,5$, or 7 at a time, but no lobsters are left over when they are removed 11 at a time?
4. $(4+6=10$ points) Note that the two parts of this problem have nothing to do with each other.
a. When does $a x \equiv b(\bmod n)$ have an integer solution in x, given that a, b and n are integers? Explain how you would find a solution.
b. What can you conclude if a, b, and c are positive integers such that $(a, b)=(b, c)=1$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ is an integer?

Extra Space

