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THEOREM 3.1

In 1997, Marcelo Polezzi of Brazil employed a geometric approach to derive an
explicit formula for computing the gcd d of 2 and b, given by the following theorem.
Its proof involves counting the lattice points (x, y) on the Cartesian plane, which are
points with integral coordinates x and y.

(M. Polezzi, 1997) Letd = {a, b). Then

PROOF

We count the lattice points on and inside AAOB in Figure 3.1 in two ways, where
>
line AB is given by y = —(bfa)x + b.

CHAPTER 3 Ca'nnom;cal Decompositions

Becéuse (@, ~b) = (~a; b) = (—a, —b) =

(a, b), we confine our discussion of geds
to positive integers.

How do we know the ged of ¢ and b always exists? Since lla and 1jb, 1 is a
common divisor of ¢ and b; so they have at least one comimion divisé_jr. Ifd isa
common djvi_éo';, thend’ < aand ¢’ < bsod = min{a, b}; that is, eifery cormon
divisor {s bounded by a positive integer, namely, the smaller of & and . Therefore,

by the well-orderi_ng principle, the set of common factors contains a largest element
d, 50 (a, b) exists.

Next quéstion, is the ged of a and b unique? It is, 56 we can talk about rhe gcd
of @ and b (see Exercise 50). '

"The preceding verbal (;Ieﬁhition of ged, although simple and clear, is not a practical .
one, 30 we rewrite it symbolically.
A Symbolic Definition of ged
A positive integer d is the gcd of two positive intégers a and b if
* dla and d|, and ‘
-Ememwa%mfsiwaMEﬂmammmﬂm%u
Thus d = (a, b) if two conditions are satisfied:

* d must be a comiimon factor of g and 4.

* d must be the largest common factor of g and &; in other Wdrds, any other
common factor d’ must be < 4 :

An Explicit Formula for ged

a—1

b
d:ZE:F—J+a+b—ah
i=1 . 4
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Figure 3.1
Number of lattice points on the legs of AAOB=a+b+1
- V . : a—1 b
Number of lattice points inside or on the hypotenuse = l-»i -+ b}
: a
i=1
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b
S
i=1 4
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: b
s, any other =, 1 [z ;j
. . i=
’ a1 b
No. of lattice points s on or inside AAOB = ) l.i ;J +@+b+1)
o _ i=l b °
16 derive an’ (See Figure 3.2 fora = Gand b =9.)
; corertt. ] o
{'l:g\xzzheare No. of lattice points on AB
ne, _ :

b
= no. of points (x, y), where x and y = ——x + b are integers.
' . . a
. b L
= no. of integers x such that y = ——x + b is an integer, where 0 < x < a
. a _

. . a 2a (d - 1Da
= no. of thy 0, -, —.--s ,
no. ¢ 1ntegers n eset{- ' d d a}

=d+1

o Wi é, wh ’
o way ' (See Figure 3.3 fora = 6 and b = 9.}
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EXAMPLE 3.1

CHAPTER 3 Canonical Decompositions

A7

—1 -y:—%x+9 - y=ﬁ§~x+9

A J - A

0i 6 X 04 6 - X

Figure 3.2  Lattice points on or inside Figure 3.3 Lanice points on AB Jor
LAOB fora =6 and b = 9. a=6andb =29

.. No. of lattice points inside AADB or on its legs equals s — (d + 1).
Total no. of points on or inside the rectangle OADB = s + [s — (d + 1)]
' =L —{d+1)
But the total no. of lattice points on or inside the rectangle = (a + 1)(2 + 1)

Thus 25 — (d + 1} = (a + )b + 1). Solving this equation, we get
d=25s—(a+1)b+1) -1
a—1 ) b :
= 2 I—| +a+ b — ab
; a
) i=l
This formula works even if b = (), ’ =

The following example demonstrates this formuia.

Use Theorem 3.1 to compute (18, 24).

SOLUTION

17 24 17 4
(18, 24) =2; liﬁj +18+24i18-24=2;[i§J ~ 390
:2(1+2+4+5+6+3+9+10+12+13+14+16+17+18
+204+21+22) -390 =6 n




