Course: Math 6221 - Homework 1 (Fall 2005)

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Office Hours: Mon. Tue. 11-12, Thurs. 2-3pm

Due: Thursday, Sept. 1st

The following exercises are all from the Grimmett-Stirzaker book (3rd ed., 2001). Please stop by my office, if you don't have a copy of the book. I can give a copy of the problems.

Problem 1. Exercise 1.4.5
(This is just to test basic knowledge of conditional probability, and since this is a classic problem.)

Problem 2. Exercise 1.8.16

Problem 3. Exercise 1.8.17

Problem 4. Exercise 1.8.18

Problem 5. (a) Let Ω be a set and let A_{1} and A_{2} be subsets of Ω. Show that the smallest σ-algebra containing A_{1} and A_{2} consists of at most 16 sets.
(b) Let $A_{1}, A_{2}, \ldots, A_{k}$ be subsets of Ω. Let $\mathcal{F}_{\|}$be the smallest σ-algebra containing the A_{i} 's. Show that $\mathcal{F}_{\|}$has at most $2^{2^{k}}$ members.
(c) Show that the upper bound in part (b) can not be improved. (Hint: Let M be the k-element set $\left\{p_{1}, \ldots, p_{k}\right\}$, and let $\Omega=2^{M}$ be the set of subsets of M. Let A_{i} be all subsets of M that contain the point p_{i}.

