Course: Math 6221 Fall'05 – Homework 5

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Office Hours: Mon. Tue. 11-12am, Thur. 2-3pm

Due: Thursday, Dec. 8th, 2005

(Note: Take-home final will be posted on Dec. 8th.)

Problem 1. Let *h* be a function such that if the vectors $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{y} = (y_1, \ldots, y_n)$ differ in at most one coordinate (that is, for some *k*, $x_i = y_i$ for all $i \neq k$) then $|h(X) - h(Y)| \leq 1$. Let X_1, \ldots, X_n be independent random variables. Then, with $\mathbf{X} = (X_1, \ldots, X_n)$, we have for a > 0 that

(*i*) $\Pr\{h(\mathbf{X}) - E[h(\mathbf{X}] \ge a\} \le e^{-a^2/2n},$ (*ii*) $\Pr\{h(\mathbf{X}) - E[h(\mathbf{X}] \le -a\} \le e^{-a^2/2n},$

Problem 2. If T_1 and T_2 are stopping times with respect to the filtration \mathcal{F} , show that $T_1 + T_2$ and max $\{T_1, T_2\}$ are stopping times also.

Problem 3. Let X_1, X_2, \ldots be a sequence of non-negative independent r.v.s and let $N(t) = \max\{n : X_1 + X_2 + \cdots + X_n \leq t\}$. Show that N(t) + 1 is a stopping time with respect to a suitable filtration to be specified.

Problem 4. If X_i , $i \ge 1$ are i.i.d. with $E[|X_1|] < \infty$ and if T is a stopping time for X_1, X_2, \ldots with $E[T] < \infty$, then

$$E[\sum_{i=1}^{T} X_i] = E[T]E[X_1].$$

Hint: Use the OST: if $\{Z_n\}$, $n \ge 1$, is a martingale sequence, and T: a stopping time with $E[T] < \infty$, and there is a $K < \infty$ such that

$$E[|Z_n - Z_{n-1}| | Z_1, \dots, Z_{n-1}] < K,$$

then $E[Z_T] = E[Z_1]$.

Problem 5. Suppose that T is a stopping time such that for some $N \in \mathbb{N}$ and some $\epsilon > 0$, we have, for every $n \in \mathbb{N}$:

$$\Pr(T \le n + N | \mathcal{F}_n) > \epsilon, \quad \text{a.s.}$$

Then $E(T) < \infty$.

Hint: Prove by induction that for k = 1, 2, 3, ...

$$\Pr(T > kN) \le (1 - \epsilon)^k.$$

Problem 6. Prove that if \mathcal{C} and \mathcal{D} are UI classes of r.v.s, and if we define

$$\mathcal{C} + \mathcal{D} := \{ X + Y : X \in \mathcal{C}, Y \in \mathcal{D} \},\$$

then $\mathcal{C} + \mathcal{D}$ is UI.