Course: Math 6221 – Test 1, FALL '05

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Office Hours: Mon. 11-12, Tue -Thurs. 2-3pm

> Due: Solve the first FOUR problems in class and turn in the rest by MONDAY NOON.

Total : 10 + 10 + 10 + 10 + 10 + 10 = 60 points

Problem 1. For X : a real-valued r.v. on (Ω, \mathcal{F}, P) , let $F(X) := \{X^{-1}(B) : \text{Borel set } B\}$.

(a) Show that F(X) is a σ -algebra over Ω .

(b) Let g be a Borel-measurable function, and let Y = g(X). Show that $F(Y) \subseteq F(X)$. Conclude that if r.v.s X_1 and X_2 are independent then $g(X_1)$ and $g(X_2)$ are independent.

Problem 2. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f be a bounded nonnegative measurable function. Show that

$$\int_{\Omega} f d\mu = \lim_{n \to \infty} \sum_{k=1}^{n2^n} \left(\frac{k-1}{2^n} \right) \mu \left(\left\{ x \in \Omega; \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \right\} \right).$$

(This formula is Lebesgue's original definition of the Lebesgue integral.)

Problem 3. We say a r.v. X is symmetric if X and -X have the same distribution. Show that X is symmetric if and only if its characteristic function $\Phi(X)$ is real-valued.

Problem 4. Let $f_n : \mathbb{R} \to \mathbb{R}$ be 1/n times the indicator function of the interval (0, n). Compute $\int \lim f_n d\mu_L$ and $\lim \int f_n d\mu_L$, where μ_L denotes the Lebesgue measure. Why isn't this a counterexample to the (Lebesgue) dominated convergence theorem?

Problem 5. A real number *m* is called a *median* of the distribution function *F* whenever $\lim_{y \uparrow m} F(y) \leq 1/2 \leq F(m)$. Show that every distribution function has at least one median, and that the set of medians of *F* is a closed interval of IR.

Hint: Show that $a := \sup\{x \in \mathbb{R} : F(x) < 1/2\}$ and $b := \sup\{x \in \mathbb{R} : F(x) \le 1/2\}$ are both medians.

Problem 6. Let X have the Normal distribution, $N(m, \sigma^2)$, with mean m and variance σ^2 . Let $Y = e^X$. Find the mean (E(Y)) and variance of Y.