Math 7018 Spring 2006
 Assignment 1. Due Wednesday, January 25th, 2006

MWF 2--3pm tetali@math.gatech.edu Skiles 234 ph: 894-9238

1. Property B: Show that $m(3)>6$, using the strategy outlined in the class: first show that we may assume that the number of points is at most 9 and then assume that we have exactly 9 points, by adding extra ones as dummy points, not included in any set; finally use a random equicoloring: choose a random coloring with 5 Reds and 4 Blues uniformly over all such colorings.
2. The Bipartite Ramsey Number $B R(k)$ is the least n so that if A, B are disjoint with $|A|=|B|=n$ and $A \times B$ is two-colored (meaning the edges between A and B are two-colored), there exist $A_{1} \subseteq A, B_{1} \subseteq$ B with $\left|A_{1}\right|=\left|B_{1}\right|=k$ and $A_{1} \times B_{1}$ monochromatic. Find and prove a theorem which gives a lower bound for $B R(k)$ and explore the asymptotics.
3. Exercise 2 from the book: Suppose $n \geq 4$ and let H be an n uniform hypergraph with at most $\frac{4^{n-1}}{3^{n}}$ edges. Prove that there is a coloring of the vertices of H by four colors so that in every edge all four colors are represented.
4. Exercise 8 from the book: (Prefix-free codes; Kraft inequality). Let F be a finite collection of binary strings of finite lengths and assume no member of F is a prefix of another one. Let N_{i} denote the number of strings of length i in F. Prove that

$$
\sum_{i} \frac{N_{i}}{2^{i}} \leq 1
$$

5. Find $m=m(n)$ as large as you can so that the following holds: Let $A_{1}, \ldots, A_{m} \subseteq\{1, \ldots, 4 n\}$ with all $\left|A_{i}\right|=n$. Then there exists a two coloring of $\{1, \ldots, 4 n\}$ such that none of the A_{i} are monochromatic. Use a random equicoloring of $\{1, \ldots, 4 n\}$. Express your answer as an asymptotic function of n.
