Math 7018 (Spring '06) Homework 2

(Due: Friday, Feb. 17th)

1. Let X be the number of cycles (not necessarily induced) in G(n,p). Show that if $p = o(n^{-1})$ then $\Pr[X > 0] = o(1)$. Let $c \in (0, 1)$ be fixed. Show that with p = c/n, E[X] = O(1), where the implicit constant in $O(\cdot)$ only depends on c > 0.

2. (Exercise 2.7.7) Let \mathcal{F} be a family of subsets of $N = \{1, 2, ..., n\}$, and suppose that there are no $A, B \in \mathcal{F}$ satisfying $A \subset B$. Let $\sigma \in S_n$ be a random permutation of the elements of N and consider the random variable

$$X = |\{i : \{\sigma(1), \sigma(2), \dots, \sigma(i)\} \in \mathcal{F}\}|.$$

By considering the expectation of X prove that $|\mathcal{F}| \leq {n \choose \lfloor n/2 \rfloor}$.

3. (Exercise 2.7.9) Let G = (V, E) be a bipartite graph with *n* vertices and a list S(v) of more than $\log_2 n$ colors associated with each vertex $v \in V$. Prove that there is a proper coloring of *G* assigning to each vertex v a color from its list S(v).

4. (Exercise 3.7.2) Prove that the Ramsey number R(4, k) satisfies

$$R(4,k) \ge \Omega\Big((k/\log k)^2)\Big),$$

and optimize the constant factor in front of the leading term.

5. (Exercise 3.7.3) Prove that every three-uniform hypergraph with n vertices and $m \ge n/3$ edges contains an independent set of size at least $\frac{2n^{3/2}}{3\sqrt{3}\sqrt{m}}$.

6. (Exercise 3.7.4) (* This is a starred problem in the book, so might be hard!) Show that there is a finite n_0 such that any directed graph on $n > n_0$ vertices in which each outdegree is at least $log_2n - \frac{1}{10} \log_2 \log_2 n$ contains an even simple directed cycle.

Optional problems. (No need to turn in)

7. Let $k_a(n)$ be the minimal k such that all $n \times n$ 0-1 matrices containing more than k ones contain an $a \times a$ submatrix consisting entirely of ones (the "all-ones" submatrix). Prove that for every constant $a \ge 2$ there is an $\epsilon > 0$ such that $k_a(n) \ge \epsilon n^{2-2/a}$.

8. For a graph G and a subset T (for TOP) of the vertices, call an edge crossing if it has exactly one vertex in T and let N(G;T) denote the number of such edges.

Prove for an appropriate $\alpha = \alpha(n) = o(n^2)$ that there exists a graph G of 2n vertices so that for every set T of n vertices,

$$\mid N(G;T) - \frac{n^2}{2} \mid < \alpha.$$