Math 7018 (Spring '06) Homework 2

(Due: Friday, Feb. 17th)

1. Let X be the number of cycles (not necessarily induced) in $G(n, p)$. Show that if $p=o\left(n^{-1}\right)$ then $\operatorname{Pr}[X>0]=o(1)$. Let $c \in(0,1)$ be fixed. Show that with $p=c / n, E[X]=O(1)$, where the implicit constant in $O(\cdot)$ only depends on $c>0$.
2. (Exercise 2.7.7) Let \mathcal{F} be a family of subsets of $N=\{1,2, \ldots, n\}$, and suppose that there are no $A, B \in \mathcal{F}$ satisfying $A \subset B$. Let $\sigma \in S_{n}$ be a random permutation of the elements of N and consider the random variable

$$
X=|\{i:\{\sigma(1), \sigma(2), \ldots, \sigma(i)\} \in \mathcal{F}\}| .
$$

By considering the expectation of X prove that $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.
3. (Exercise 2.7.9) Let $G=(V, E)$ be a bipartite graph with n vertices and a list $S(v)$ of more than $\log _{2} n$ colors associated with each vertex $v \in V$. Prove that there is a proper coloring of G assigning to each vertex v a color from its list $S(v)$.
4. (Exercise 3.7.2) Prove that the Ramsey number $R(4, k)$ satisfies

$$
\left.R(4, k) \geq \Omega\left((k / \log k)^{2}\right)\right)
$$

and optimize the constant factor in front of the leading term.
5. (Exercise 3.7.3) Prove that every three-uniform hypergraph with n vertices and $m \geq n / 3$ edges contains an independent set of size at least $\frac{2 n^{3 / 2}}{3 \sqrt{3} \sqrt{m}}$.
6. (Exercise 3.7.4) (* This is a starred problem in the book, so might be hard!) Show that there is a finite n_{0} such that any directed graph on $n>n_{0}$ vertices in which each outdegree is at least $\log _{2} n-\frac{1}{10} \log _{2} \log _{2} n$ contains an even simple directed cycle.

Optional problems. (No need to turn in)
7. Let $k_{a}(n)$ be the minimal k such that all $n \times n 0-1$ matrices containing more than k ones contain an $a \times a$ submatrix consisting entirely of ones (the "all-ones" submatrix). Prove that for every constant $a \geq 2$ there is an $\epsilon>0$ such that $k_{a}(n) \geq \epsilon n^{2-2 / a}$.
8. For a graph G and a subset T (for $T O P$) of the vertices, call an edge crossing if it has exactly one vertex in T and let $N(G ; T)$ denote the number of such edges.

Prove for an appropriate $\alpha=\alpha(n)=o\left(n^{2}\right)$ that there exists a graph G of $2 n$ vertices so that for every set T of n vertices,

$$
\left|N(G ; T)-\frac{n^{2}}{2}\right|<\alpha .
$$

