Math 7018 (Spring '06) Homework 4

(Due: Wednesday, April 5th)

1. (a) Prove the following version of the local lemma. Let $[n]$ denote the set $\{1,2, \ldots, n\}$. Consider as usual a set of n events, $A_{1}, A_{2}, \ldots, A_{n}$, such that each A_{i} is mutually independent of events A_{j}, for $j \in[n]-D_{i}$ (and $j \neq i$), for some $D_{i} \subset[n]$. If for each $i \in\{1,2, \ldots, n\}$,
(i) $\operatorname{Pr}\left(A_{i}\right) \leq 1 / 8$ and
(ii) $\sum_{j \in D_{i}} \operatorname{Pr}\left(A_{j}\right) \leq 1 / 4$.
then with positive probability, none of the events happen.
(b) For $\beta \geq 1$, a proper coloring of the vertices of a graph is called a β-capped proper coloring, if for each vertex v and color c, the number of times c appears in the neighborhood of v is at most β. If G has maximum degree $\Delta \geq \beta^{\beta}$ then G has a β-capped proper vertex coloring using at most $16 \Delta^{1+1 / \beta}$ colors.
2. Let $f(k)$ be the least n so that if the subsets S of $\{1,2, \ldots, n\}$ of size k are two-colored then there exists a set $T \subset\{1,2, \ldots, n\}$ of size $k+1$, all of whose k-element subsets are the same color. Use both the basic probabilistic method and the Lovasz local lemma to find lower bounds on $f(k)$ and compare them asymptotically.
3. (Exercise 5.8.3). Let $G=(V, E)$ be a simple graph and suppose each $v \in V$ is associated with a set $S(v)$ of colors of at least $10 d$, where $d \geq 1$. Suppose, in addition, that for each $v \in V$ and $c \in S(v)$ there are at most d neighbors u of v such that c lies in $S(u)$. Prove that there is a proper coloring of G assigning to each vertex v a color from its class $S(v)$.
4. (Exercise 5.8.1). Prove that for every integer $d>1$ there is a finite $c(d)$ such that the edges of any bipartitie graph with maximum degree d in which every cycle has at least $c(d)$ edges can be colored by $d+1$ colors so that there are no two adjacent edges with the same color and there is no two-colored cycle.

Optional Problems.

These can be done using just the basic probabilistic method.

1. (a) Show that there exists an $n \times n$ matrix (for all n) with entries from $\{+1,-1\}$ whose determinant is at least $\sqrt{n!}$.
(b) What is the determinant of a Hadamard matrix of size $n \times n$? [Recall that a Hadamard matrix is a square matrix with entries $+1,-1$, and with the property that the rows vectors are mutually orthogonal (and hence also the column vectors).]
2. Show that any 3 -satisfiable formula has an assignment which satisfies at least $2 / 3$ of the clauses.
