Math 7018 (Spring '06) Homework 4

(Due: Wednesday, April 5th)

- 1. (a) Prove the following version of the local lemma. Let [n] denote the set $\{1, 2, \ldots, n\}$. Consider as usual a set of n events, A_1, A_2, \ldots, A_n , such that each A_i is mutually independent of events A_j , for $j \in [n] - D_i$ (and $j \neq i$), for some $D_i \subset [n]$. If for each $i \in \{1, 2, \ldots, n\}$,
 - (i) $Pr(A_i) \leq 1/8$ and
 - (ii) $\sum_{j \in D_i} Pr(A_j) \le 1/4.$

then with positive probability, none of the events happen.

(b) For $\beta \geq 1$, a *proper* coloring of the vertices of a graph is called a β -capped proper coloring, if for each vertex v and color c, the number of times c appears in the neighborhood of v is at most β . If G has maximum degree $\Delta \geq \beta^{\beta}$ then G has a β -capped proper vertex coloring using at most $16\Delta^{1+1/\beta}$ colors.

- 2. Let f(k) be the least n so that if the subsets S of $\{1, 2, ..., n\}$ of size k are two-colored then there exists a set $T \subset \{1, 2, ..., n\}$ of size k + 1, all of whose k-element subsets are the same color. Use both the basic probabilistic method and the Lovasz local lemma to find lower bounds on f(k) and compare them asymptotically.
- 3. (Exercise 5.8.3). Let G = (V, E) be a simple graph and suppose each $v \in V$ is associated with a set S(v) of colors of at least 10*d*, where $d \ge 1$. Suppose, in addition, that for each $v \in V$ and $c \in S(v)$ there are at most *d* neighbors *u* of *v* such that *c* lies in S(u). Prove that there is a proper coloring of *G* assigning to each vertex *v* a color from its class S(v).
- 4. (Exercise 5.8.1). Prove that for every integer d > 1 there is a finite c(d) such that the edges of any bipartitie graph with maximum degree d in which every cycle has at least c(d) edges can be colored by d + 1 colors so that there are no two adjacent edges with the same color and there is no two-colored cycle.

Optional Problems.

These can be done using just the basic probabilistic method.

1. (a) Show that there exists an $n \times n$ matrix (for all n) with entries from $\{+1, -1\}$ whose determinant is at least $\sqrt{n!}$.

(b) What is the determinant of a Hadamard matrix of size $n \times n$? [Recall that a Hadamard matrix is a square matrix with entries +1, -1, and with the property that the rows vectors are mutually orthogonal (and hence also the column vectors).]

2. Show that any 3-satisfiable formula has an assignment which satisfies at least 2/3 of the clauses.