Math 7018 (Spring '06)

(Due: Wednesday, March 1st)

1. (a) Let $A \subset\{1,2, \ldots, 4 n\},|A|=n$. Let T be uniformly selected from among the subsets of $\{1,2, \ldots, 4 n\}$ containing exactly $2 n$ elements. Set $B=\{1,2, \ldots, 4 n\}-T$. Find a precise expression, in terms of binomial coefficients for

$$
\operatorname{Pr}[A \subset T \text { or } A \subset B] .
$$

Using Stirling's formula, find an asymptotic value for this probability.
(b) Using the above result prove a theorem of the following form for α as big as possible. Let $A_{1}, A_{2}, \ldots, A_{m} \subset\{1,2, \ldots, 4 n\},\left|A_{i}\right|=n$, with $m<\alpha$. Then there exists a two-coloring of $\{1,2, \ldots, 4 n\}$ so that none of the A_{i} are monochromatic.

Hint. Take a random equicoloring.
2. Show that there is a positive constant c such that the following holds. For any n reals $a_{1}, a_{2}, \ldots, a_{n}$ satisfying $\sum_{i=1}^{n} a_{i}^{2}=1$, if $\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\right)$ is a $\{-1,+1\}$ random vector obtained by choosing each ϵ_{i} randomly and independently with uniform distribution to be either -1 or 1 , then

$$
\operatorname{Pr}\left[\left|\sum_{i} \epsilon_{i} a_{i} \leq 1\right|\right] \geq c .
$$

3. An (n, k, l) covering is a family \mathcal{F} of k-subsets of an n-element set such that every l-subset is contained in at least one of $A \in \mathcal{F}$. Let $M(n, k, l)$ denote the minimal cardinality of such a design.
(a) Observe that $M(n, k, l) \geq\binom{ n}{l} /\binom{k}{l}$.
(b) Show that

$$
M(n, k, l) \leq 2\left[\binom{n}{l} /\binom{k}{l}\right]\left(1+\log \binom{k}{l}\right)
$$

Hint. Use the alteration method. Choose a random k-uniform family \mathcal{F}, where each k-set is chosen with probability p independently. Argue that with positive probability $|\mathcal{F}| \leq 2 p\binom{n}{k}$ AND fewer than $2\binom{n}{l} e^{-x} l$-sets are not covered by \mathcal{F}, for an appropriate x.
(c) Can you get rid of the factor 2 in the r.h.s. of (b)?
4. Let $G(n, p)$ denote the standard random graph on n vertices.
(a) Prove that if $n p \rightarrow 0$ as $n \rightarrow \infty$, then $\operatorname{Pr}[G(n, p)$ is a forest $] \rightarrow 1$. (A forest is a graph without cycles.)
(b) Prove that $p=(\log n) / n$ is a threshold probability for the disappearance of isolated vertices. Remark. Parts (a) and (b) of this problem are not necessarily related to each other.

