MATH 7018-Homework 1 (Spring 2014)

Due date: Thursday, January 23rd
 Instructor: Prasad Tetali

Please submit organized and well written solutions

Some of the exercises are from the Alon-Spencer textbook, as indicated in parantheses.
Problem 1. Recall that $m(n)$ is the smallest size family of n-sets which is not 2 -colorable. Prove that $m(3)>6$, by showing that every collection of 6 or fewer 3 -sets is 2 -colorable.

Hint. Use the probabilistic method: first show that the ground set might as well be of size at most 9 . Then consider a uniform random equi-coloring - over all possible 2 -colorings with 5 Reds and 4 Blues, choose one at random, uniformly.

Problem 2. (Exercise 1.6.1) Prove that if there is a real $p, 0 \leq p \leq 1$, such that

$$
\binom{n}{k} p^{\binom{k}{2}}+\binom{n}{t}(1-p)^{\binom{t}{2}}<1
$$

then the Ramsey number $R(k, t)$ satisfies $R(k, t)>n$. Using this show that

$$
R(4, t) \geq \Omega\left(t^{3 / 2} /(\ln t)^{3 / 2}\right)
$$

Problem 3. (Exercise 1.6.10) Prove that there is an absolute constant $c>0$ with the following property; Let A be an $n \times n$ matrix with pairwise distinct entries. Then there is a permutation of the rows of A so that no column in the permuted matrix contains an increasing subsequence of length at least $c \sqrt{n}$.
Problem 4. (Exercise 1.6.4) Let $G=(V, E)$ be a graph with n vertices and minimum degree $\delta>10$. Prove that there is a partition of V into two disjoint subsets A and B so that $|A| \leq O(n \ln \delta / \delta)$ and each vertex of B has at least one neighbor in A and at least one neighbor in B.

Problem 5. (Exercise 2.7.7) Let \mathcal{F} be a family of subsets of $N=\{1,2, \ldots, n\}$, and suppose that there are no $A, B \in \mathcal{F}$ satisfying $A \subset B$. Let $\sigma \in S_{n}$ be a random permutation of the elements of N and consider the random variable

$$
X=|\{i:\{\sigma(1), \sigma(2), \ldots, \sigma(i)\} \in \mathcal{F}\}| .
$$

By considering the expectation of X prove that $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.
Problem 6. (a) Show that there exists an $n \times n$ matrix (for all n) with entries from $\{+1,-1\}$ whose determinant is at least $\sqrt{n!}$.
(b) What is the determinant of a Hadamard matrix of size $n \times n$? [Recall that a Hadamard matrix is a square matrix with entries $+1,-1$, and with the property that the rows vectors are mutually orthogonal (and hence also the column vectors).]

Problem 7. Prove that every set A of n nonzero integers contains two disjoint subsets $B_{1}, B_{2} \subseteq A$, so that $\left|B_{1}\right|+\left|B_{2}\right|>2 n / 3$ and each set B_{i} is sum-free (that is, there are no $b_{1}, b_{2}, b_{3} \in B_{i}$ so that $b_{1}+b_{2}=b_{3}$.)

Optional Subproblems: (No need to submit)

Problem O1. (Exercise 1.6.2) Suppose $n>4$ and let H be an n-uniform hypergraph with at most $4^{n-1} / 3^{n}$ edges. Prove that there is a coloring of the vertices of H by 4 colors so that in every edge all 4 colors are represented.

Problem O2. (Exercise 1.6.8) Let F be a finite collection of binary strings of finite lengths and assume no member of F is a prefix of another one. Let n_{i} denote the number of strings of length i in F. Prove that

$$
\sum_{i} \frac{n_{i}}{2^{i}} \leq 1
$$

Problem O3. We say a subset A of a set S of distinct positive integers is sum-avoiding if the sum of any distinct pair of integers from A is not contained in S. That is, $\forall a, b \in A$, we need $a+b \notin S$. Show that any set of n distinct positive integers contains a sum-avoiding subset of size at least $\log n$. Hint: No need for any probability; but use the Turán-type bound on the independence number of a graph we saw in class : $\alpha(G) \geq \sum_{v} \frac{1}{d(v)+1}$.

