MATH 7018 - HW 2 (Spring 2014)

Due date: Thursday, Feb. 13th Instructor: Prasad Tetali

Problem 1. Let X be the number of cycles (not necessarily induced) in G(n, p). Show that if $p = o(n^{-1})$ then $\Pr[X > 0] = o(1)$. Let $c \in (0, 1)$ be fixed. Show that with p = c/n, E[X] = O(1), where the implicit constant in $O(\cdot)$ only depends on c > 0.

Problem 2. (Exercise 4.8.2) Show that there is a positive constant c such that the following holds. For any n reals a_1, a_2, \ldots, a_n satisfying $\sum_i a_i^2 = 1$, if $(\epsilon_1, \ldots, \epsilon_n)$ is a $\{-1, 1\}$ -random vector obtained by choosing each ϵ_i randomly and independently with uniform distribution to be either -1 or +1, then

$$\Pr\left[\left|\sum_{i=1}^{n} \epsilon_{i} a_{i}\right| \leq 1\right] \geq c.$$

(*Hint.* Consider two cases – either there is an a_i with absolute value at least 1/2 or not – and argue separately.)

Problem 3. (Exercise 4.8.4) Let X be a random variable with expectration E[X] = 0 and variance σ^2 . Prove that for all $\lambda > 0$,

$$\Pr[X \ge \lambda] \le \frac{\sigma^2}{\sigma^2 + \lambda^2}$$

Problem 4. (Exercise 4.8.5) For $1 \le i \le n$, let $v_i = (x_i, y_i)$ be *n* two-dimensional vectors, where each x_i and y_i is an integer whose absolute value does not exceed $2^{n/2}/(100\sqrt{n})$. Show that there are two disjoint sets $I, J \subset \{1, 2, ..., n\}$ such that

$$\sum_{i\in I} v_i = \sum_{j\in J} v_j \,.$$

Reading Exercise. Read the Probabilistic Lens on "Weierstrass Approximation Theorem" on Pages 117-118 of [A-S]. The proof (due to Bernstein) is elementary and uses Chebyshev's inequality on the binomial random variable.