MATH 7018-HW 2 (Spring 2014)

Due date: Thursday, Feb. 13th
 Instructor: Prasad Tetali

Problem 1. Let X be the number of cycles (not necessarily induced) in $G(n, p)$. Show that if $p=o\left(n^{-1}\right)$ then $\operatorname{Pr}[X>0]=o(1)$. Let $c \in(0,1)$ be fixed. Show that with $p=c / n$, $E[X]=O(1)$, where the implicit constant in $O(\cdot)$ only depends on $c>0$.

Problem 2. (Exercise 4.8.2) Show that there is a positive constant c such that the following holds. For any n reals $a_{1}, a_{2}, \ldots, a_{n}$ satisfying $\sum_{i} a_{i}^{2}=1$, if $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ is a $\{-1,1\}$-random vector obtained by choosing each ϵ_{i} randomly and independently with uniform distribution to be either -1 or +1 , then

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} \epsilon_{i} a_{i}\right| \leq 1\right] \geq c
$$

(Hint. Consider two cases - either there is an a_{i} with absolute value at least $1 / 2$ or not and argue separately.)

Problem 3. (Exercise 4.8.4) Let X be a random variable with expectration $E[X]=0$ and variance σ^{2}. Prove that for all $\lambda>0$,

$$
\operatorname{Pr}[X \geq \lambda] \leq \frac{\sigma^{2}}{\sigma^{2}+\lambda^{2}}
$$

Problem 4. (Exercise 4.8.5) For $1 \leq i \leq n$, let $v_{i}=\left(x_{i}, y_{i}\right)$ be n two-dimensional vectors, where each x_{i} and y_{i} is an integer whose absolute value does not exceed $2^{n / 2} /(100 \sqrt{n})$. Show that there are two disjoint sets $I, J \subset\{1,2, \ldots, n\}$ such that

$$
\sum_{i \in I} v_{i}=\sum_{j \in J} v_{j} .
$$

Reading Exercise. Read the Probabilistic Lens on "Weierstrass Approximation Theorem" on Pages 117-118 of [A-S]. The proof (due to Bernstein) is elementary and uses Chebyshev's inequality on the binomial random variable.

