MATH 7018-HW 3 (Spring 2014)

Due date: Thursday, March 13th

Instructor: Prasad Tetali

Problem 1. Let X_{1}, X_{2}, \ldots be independent random variables, each exponentially distributed with rate 1 : for $n \geq 1$,

$$
\operatorname{Pr}\left(X_{n}>x\right)=e^{-x}, \quad x \geq 0
$$

Show that

$$
\operatorname{Pr}\left(X_{n}>\log n+\alpha \log \log n \text { i.o. }\right)=0, \text { if } \alpha>1, \text { and }=1, \text { if } \alpha \leq 1 .
$$

Problem 2. Let X_{1}, X_{2}, \ldots be i.i.d. random variables. Show that

$$
\operatorname{Pr}\left[\left|X_{n}\right| \geq n \text { i.o. }\right]=0
$$

if and only if $\mathrm{E}\left[\left|X_{1}\right|\right]<\infty$.

Problem 3. Let $\left\{S_{n} \mid n \geq 0\right\}$ denote the position of the simple random walk, which moves to the right with probability p and to the left with probability $q=1-p$ at each step on the integer line. Suppose that $S_{0}=0$. Show that

$$
\operatorname{Pr}\left[S_{n}=0 \quad \text { i.o. }\right]=0, \quad \text { if } p \neq 1 / 2 .
$$

Problem 4. Define $f(k)$ to be the least n so that if the subsets S of $\{1,2, \ldots, n\}$ of size k are two-colored then there exists a set $T \subset\{1,2, \ldots, n\}$ of size $k+1$, all of whose k-element subsets are of the same color. (The existence of such an n follows from Ramsey's theorem, but here we are concerned with lower bounds.) Use both the basic probabilistic method and the Lovász local lemma to find lower bounds on $f(k)$.

Problem 5. (a) Prove the following version of the local lemma. Let $[n]$ denote the set $\{1,2, \ldots, n\}$. Consider as usual a set of n events, $A_{1}, A_{2}, \ldots, A_{n}$; each event A_{i} also has an associated $D_{i} \subset[n]$, such that A_{i} is mutually independent of events A_{j}, for $j \in[n] \backslash D_{i}$. If for each $i \in[n]$,
(i) $\operatorname{Pr}\left(A_{i}\right) \leq 1 / 8$, and
(ii) $\sum_{j \in D_{i}} \operatorname{Pr}\left(A_{j}\right) \leq 1 / 4$,
then with positive probability, none of the events happen.
(b) For $\beta \geq 1$, a proper coloring of the vertices of a graph is called a β-capped proper coloring, if for each vertex v and color c, the number of times c appears in the neighborhood of v is at most β. If G has maximum degree $\Delta \geq \beta^{\beta}$, then G has a β-capped proper vertex coloring using at most $16 \Delta^{1+1 / \beta}$ colors.

Problem 6. Let A_{1}, A_{2}, \ldots be a sequence of events. Let $B_{n}=\cup_{m=n}^{\infty} A_{m}$ and $C_{n}=\cap_{m=n}^{\infty} A_{m}$. Clearly, $C_{n} \subset A_{n} \subset B_{n}$, with B_{n} : decreasing and C_{n} : increasing sequences of events with the limits:

$$
\begin{aligned}
& B=\lim B_{n}=\cap B_{n}=\cap_{n} \cup_{m \geq n} \quad A_{m}=: \lim \sup _{n \rightarrow \infty} A_{n}, \\
& C=\lim C_{n}=\cup C_{n}=\cup_{n} \cap_{m \geq n} \quad A_{m}=: \lim \inf _{n \rightarrow \infty} A_{n} .
\end{aligned}
$$

Show that
(a) $B=\left\{\omega \in \Omega: \omega \in A_{n}\right.$ for infinitely many $\left.n\right\}$.
(b) $C=\left\{\omega \in \Omega: \omega \in A_{n}\right.$ for all but finitely many $\left.n\right\}$.

If $B=C$, we say $A_{n} \rightarrow A$ where $A=B=C$. In such a case, show that
(c) A is an event, i.e., that $A \in \mathcal{F}$, and that
(d) $\operatorname{Pr}\left(A_{n}\right) \rightarrow \operatorname{Pr}(A)$, as $n \rightarrow \infty$.

Optional Problems.

Problem O1. Let \mathcal{F} be a σ-field of subsets of Ω. Suppose $B \in \mathcal{F}$. Show that $\mathcal{G}=\{A \cap B$: $A \in \mathcal{F}\}$ is a σ-field of subsets of B. (As you can imagine, this property is convenient in defining a conditional probability measure over such a \mathcal{G}, conditioned on an event B of positive probability.)

Problem O2. Given a collection of sets: $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$, with each $A_{i} \in \Omega$, show that it can be extended to a σ-field as follows: Let

$$
\sigma(\mathcal{A}):=\cap_{\hat{\sigma}} \quad \hat{\sigma}\left(A_{1}, A_{2}, \ldots, A_{n}\right),
$$

where the intersection is over all $\hat{\sigma}$: σ-fields containing all A_{i}. Argue that $\sigma(\mathcal{A})$ is the smallest σ-field containing $A_{1}, A_{2}, \ldots, A_{n}$.

Problem O3. Let \mathcal{F} be a σ-field over subsets of Ω. Suppose $P: \mathcal{F} \rightarrow[0,1]$ satisfies: $P(\phi)=0, P(\Omega)=1$, and

$$
P(A \cup B)=P(A)+P(B), \text { for all } A, B \in \mathcal{F}, \text { with } A \cap B=\phi
$$

Show that if P is continuous, in the sense discussed in class, then P is countably additive.

