MATH 7018 - HW 3 (Spring 2014)

Due date: Thursday, March 13th Instructor: Prasad Tetali

Problem 1. Let X_1, X_2, \ldots be independent random variables, each *exponentially distributed* with rate 1: for $n \ge 1$,

$$\Pr(X_n > x) = e^{-x}, \quad x \ge 0.$$

Show that

$$Pr(X_n > \log n + \alpha \log \log n \text{ i.o.}) = 0$$
, if $\alpha > 1$, and $= 1$, if $\alpha \le 1$

Problem 2. Let X_1, X_2, \ldots be i.i.d. random variables. Show that

$$\Pr[|X_n| \ge n \text{ i.o.}] = 0,$$

if and only if $E[|X_1|] < \infty$.

Problem 3. Let $\{S_n | n \ge 0\}$ denote the position of the simple random walk, which moves to the right with probability p and to the left with probability q = 1 - p at each step on the integer line. Suppose that $S_0 = 0$. Show that

$$\Pr[S_n = 0 \text{ i.o.}] = 0, \text{ if } p \neq 1/2.$$

Problem 4. Define f(k) to be the least n so that if the subsets S of $\{1, 2, ..., n\}$ of size k are two-colored then there exists a set $T \subset \{1, 2, ..., n\}$ of size k + 1, all of whose k-element subsets are of the same color. (The existence of such an n follows from Ramsey's theorem, but here we are concerned with *lower bounds*.) Use both the basic probabilistic method and the Lovász local lemma to find lower bounds on f(k).

Problem 5. (a) Prove the following version of the local lemma. Let [n] denote the set $\{1, 2, \ldots, n\}$. Consider as usual a set of n events, A_1, A_2, \ldots, A_n ; each event A_i also has an associated $D_i \subset [n]$, such that A_i is mutually independent of events A_j , for $j \in [n] \setminus D_i$. If for each $i \in [n]$,

(i) $\Pr(A_i) \leq 1/8$, and

(ii) $\sum_{j \in D_i} \Pr(A_j) \le 1/4$,

then with positive probability, none of the events happen.

(b) For $\beta \geq 1$, a proper coloring of the vertices of a graph is called a β -capped proper coloring, if for each vertex v and color c, the number of times c appears in the neighborhood of v is at most β . If G has maximum degree $\Delta \geq \beta^{\beta}$, then G has a β -capped proper vertex coloring using at most $16\Delta^{1+1/\beta}$ colors.

Problem 6. Let A_1, A_2, \ldots be a sequence of events. Let $B_n = \bigcup_{m=n}^{\infty} A_m$ and $C_n = \bigcap_{m=n}^{\infty} A_m$. Clearly, $C_n \subset A_n \subset B_n$, with B_n : decreasing and C_n : increasing sequences of events with the limits:

$$B = \lim B_n = \cap B_n = \cap_n \cup_{m \ge n} A_m =: \lim \sup_{n \to \infty} A_n,$$
$$C = \lim C_n = \cup C_n = \cup_n \cap_{m \ge n} A_m =: \lim \inf_{n \to \infty} A_n.$$

Show that

(a) $B = \{ \omega \in \Omega : \omega \in A_n \text{ for infinitely many } n \}$. (b) $C = \{ \omega \in \Omega : \omega \in A_n \text{ for all but finitely many } n \}$. If B = C, we say $A_n \to A$ where A = B = C. In such a case, show that (c) A is an event, i.e., that $A \in \mathcal{F}$, and that (d) $\Pr(A_n) \to \Pr(A)$, as $n \to \infty$.

Optional Problems.

Problem O1. Let \mathcal{F} be a σ -field of subsets of Ω . Suppose $B \in \mathcal{F}$. Show that $\mathcal{G} = \{A \cap B : A \in \mathcal{F}\}$ is a σ -field of subsets of B. (As you can imagine, this property is convenient in defining a *conditional* probability measure over such a \mathcal{G} , conditioned on an event B of positive probability.)

Problem O2. Given a collection of sets: $\mathcal{A} = \{A_1, \ldots, A_n\}$, with each $A_i \in \Omega$, show that it can be extended to a σ -field as follows: Let

$$\sigma(\mathcal{A}) := \cap_{\hat{\sigma}} \ \hat{\sigma}(A_1, A_2, \dots, A_n),$$

where the intersection is over all $\hat{\sigma}$: σ -fields containing all A_i . Argue that $\sigma(\mathcal{A})$ is the smallest σ -field containing A_1, A_2, \ldots, A_n .

Problem O3. Let \mathcal{F} be a σ -field over subsets of Ω . Suppose $P : \mathcal{F} \to [0,1]$ satisfies: $P(\phi) = 0, P(\Omega) = 1$, and

$$P(A \cup B) = P(A) + P(B)$$
, for all $A, B \in \mathcal{F}$, with $A \cap B = \phi$.

Show that if P is *continuous*, in the sense discussed in class, then P is countably additive.