MATH 7018-HW 4 (Spring 2014)

Due date: Thursday, April 10th
 Instructor: Prasad Tetali

Problem 1. (Strong Law under stronger moment hypothesis). Suppose that X_{1}, X_{2}, \ldots, are independent r.v.s with mean 0 , and so that

$$
\mathrm{E}\left(X_{n}^{4}\right) \leq C, \quad \forall n \geq 1
$$

for some constant $C>0$. Show that, for $S_{n}:=\sum_{i=1}^{n} X_{i}$, we have

$$
\operatorname{Pr}\left(S_{n} / n \rightarrow 0\right)=1
$$

Hint. First show that $\mathrm{E}\left(S_{n}^{4}\right) \leq 3 C n^{2}$.

Problem 2. A bag contains red and green balls. A ball is drawn from the bag, its color noted, then it is returned to the bag together with a new ball of the same color. Initially the bag contained one ball of each color, say. If G_{n} denotes the number of green balls in the bag after n additions, show that $S_{n}=G_{n} /(n+2)$ is a martingale. Deduce that the ratio of the green to red balls converges almost surely to some limit as $n \rightarrow \infty$.

Problem 3.

(a) For X, Y : r.v.s, verify that

$$
\operatorname{Var}(\mathrm{Y})=\mathrm{E}[\operatorname{Var}(\mathrm{Y} \mid \mathrm{X})]+\operatorname{Var}(\mathrm{E}[\mathrm{Y} \mid \mathrm{X}])
$$

(b) Let N be a nonnegative integer r.v. Let S be the sum of a random number of r.v.s, defined as $S:=\sum_{i=1}^{N} X_{i}$, with X_{i} being i.i.d. Then show that

$$
\mathrm{E}[\mathrm{~S}]=\mathrm{E}[\mathrm{~N}] \mathrm{E}\left[\mathrm{X}_{1}\right] \text {, and that } \operatorname{Var}(\mathrm{S})=\operatorname{Var}(\mathrm{N})\left(\mathrm{E}\left[\mathrm{X}_{1}\right]\right)^{2}+\operatorname{Var}\left(\mathrm{X}_{1}\right) \mathrm{E}[\mathrm{~N}] .
$$

Problem 4. (Exercise 7.9.1 from A-S.) Let $G=(V, E)$ be a graph whose vertices are all 7^{n} vectors of length n over Z_{7} (integers mod 7), in which two vertices are adjacent iff they differ in one coordinate. Let $U \subset V$ be a set of 7^{n-1} vertices of G, and let W be the set of all vertices whose distance from U exceeds $(c+2) \sqrt{n}$, where $c>0$ is a constant. Prove that $|W| \leq 7^{n} e^{-c^{2} / 2}$.

Problem 5. (Exercise 7.9.2 from A-S.) Let $G=(V, E)$ be a graph with chromatic number $\chi(G)=1000$. Let $U \subset V$ be a random subset of V chosen uniformly among all $2^{|V|}$ subsets of V. Let $H=G[U]$ be the induced subgraph of G on U. Prove that

$$
\operatorname{Pr}[\chi(H) \leq 400]<1 / 100
$$

