MATH 7018 - HW 4 (Spring 2014)

Due date: Thursday, April 10th Instructor: Prasad Tetali

Problem 1. (Strong Law under stronger moment hypothesis). Suppose that X_1, X_2, \ldots , are independent r.v.s with mean 0, and so that

$$\operatorname{E}(X_n^4) \le C, \quad \forall n \ge 1,$$

for some constant C > 0. Show that, for $S_n := \sum_{i=1}^n X_i$, we have

$$\Pr(S_n/n \to 0) = 1.$$

Hint. First show that $E(S_n^4) \leq 3Cn^2$.

Problem 2. A bag contains red and green balls. A ball is drawn from the bag, its color noted, then it is returned to the bag together with a new ball of the same color. Initially the bag contained one ball of each color, say. If G_n denotes the number of green balls in the bag after n additions, show that $S_n = G_n/(n+2)$ is a martingale. Deduce that the ratio of the green to red balls converges almost surely to some limit as $n \to \infty$.

Problem 3.

(a) For X, Y: r.v.s, verify that

$$Var(Y) = E[Var(Y|X)] + Var(E[Y|X]).$$

(b) Let N be a nonnegative integer r.v. Let S be the sum of a random number of r.v.s, defined as $S := \sum_{i=1}^{N} X_i$, with X_i being i.i.d. Then show that

 $E[S] = E[N]E[X_1]$, and that $Var(S) = Var(N)(E[X_1])^2 + Var(X_1)E[N]$.

Problem 4. (Exercise 7.9.1 from A-S.) Let G = (V, E) be a graph whose vertices are all 7^n vectors of length n over Z_7 (integers mod 7), in which two vertices are adjacent iff they differ in one coordinate. Let $U \subset V$ be a set of 7^{n-1} vertices of G, and let W be the set of all vertices whose distance from U exceeds $(c+2)\sqrt{n}$, where c > 0 is a constant. Prove that $|W| \leq 7^n e^{-c^2/2}$.

Problem 5. (Exercise 7.9.2 from A-S.) Let G = (V, E) be a graph with chromatic number $\chi(G) = 1000$. Let $U \subset V$ be a random subset of V chosen uniformly among all $2^{|V|}$ subsets of V. Let H = G[U] be the induced subgraph of G on U. Prove that

$$\Pr[\chi(H) \le 400] < 1/100$$
.