MATH 7018- TEST 1 (Spring 2014)

Due date: Thursday, Feb. 20th

Instructor: Prasad Tetali

Please try to work on your own - it's the only difference from the hws!

Problem 1. For a graph G and a subset T (for $T O P$) of the vertices, call an edge crossing if it has exactly one vertex in T and let $N(G ; T)$ denote the number of such edges.

Prove for an appropriate (i.e., as small as possible) $\alpha=\alpha(n)$ that there exists a graph G of $2 n$ vertices so that for every set T of n vertices,

$$
\left|N(G ; T)-\frac{n^{2}}{2}\right|<\alpha
$$

Problem 2. Prove that every three-uniform hypergraph with n vertices and $m \geq n / 3$ edges contains an independent set of size at least $\frac{2 n^{3 / 2}}{3 \sqrt{3} \sqrt{m}}$.

Problem 3. Let $G=(V, E)$ be a bipartite graph on n vertices with a list $S(v)$ of more than $\log _{2} n$ colors associated with each vertex $v \in V$. Prove that there is a proper coloring of G assigning to each vertex v a color from its list $S(v)$.

Problem 4. (Weaker bound for Property B.) Show that every n-uniform hypergraph can be properly 2 -colored as long as the number of edges is $O\left(2^{n} n^{1 / 3}(\ln n)^{-1 / 2}\right)$.

Hint: First color each element randomly red/blue (with equal probability and independently). Then flip the color, with probability p, of each element involved in a monochromatic set from the first coloring. To bound the probability that edge e was red in the first coloring and f was blue in the recoloring, bound the probability of the event $A_{\text {efR }}$ where $R \subset f \backslash e$ is the subset of f (besides $e \cap f$ which turned red to blue).

Problem 5. Let $[n]_{p}$ denote a random subset of integers chosen from the set $[n]:=$ $\{1,2, \ldots, n\}$ as follows: $p=p(n)$ is the probability of including each integer from $[n]$, independently of the others. Determine the threshold function (in the sense of Section 4.4 of [Alon-Spencer]) for the existence of a 3-term arithmetic progression (3TAP) in $[n]_{p}$:

That is, identify a function $r(n)$ such that if $p(n) \gg r(n)$, then the probability that $[n]_{p}$ contains a 3TAP goes to 1 (as $n \rightarrow \infty$), while if $p(n) \ll r(n)$, the probability goes to 0 , as $n \rightarrow \infty$.

