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Tentative Plans

1. Basics for Probability theory

Coin Tossing, Expectation, Linearity of Expectation,
Probability vs. Expectation, Bool’s Inequality

2. First moment (or expectation) method and Markov
Inequality

Applications to problems regarding

• Property B

• Arithmetic Progressions

• Covering hypercubes

• Ramsey numbers

• Independence numbers of graphs

• Occupancy Problems
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3. Methods of conditional events

• Property B & Recoloring (Beck’s theorem)

• Independent numbers of sparse graphs (AKS* theorem)

• Covering hypercubes (K & Roche’s theorem)

*Ajtai, Komlós and Szemerédi

4. Second Moment Method (or Chebyschev’s Inequality)

Applications to problems regarding

• Arithmetic progression

• Random graphs

• Perfect matchings in random uniform hypergraphs

• Covering hypercube

• Occupancy Problems and Poisson approximation
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4. Law of large numbers

• Chernoff Bounds

• Martingale Inequalities

• Talagrand Inequality,

Applications to problems regarding:

• Ramsey numbers

• Chromatic number of G(n, 1/2),

• Incremental random method

• Cut-off line Algorithm:

Matching of uniform random numbers ∈ [0, 1]
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6. Lovasz Local Lemma

7. Incremental random methods

8. Branching Processes

9. Poisson Cloning Model

10. Random regular graph and contiguity
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1 Basics for Probability Theory

1.1 Probabilities, Events and Random variables

• One coin tossing

X =





1 if “HEAD”

0 if “TAIL”

Thus
Pr[X = 0] = Pr[X = 1] = 1/2.

• Two coin tossing: X1, X2

Pr[X1 = 0, X2 = 0] = Pr[X1 = 1, X2 = 0]

= Pr[X1 = 0, X2 = 1] = Pr[X1 = 1, X2 = 1] = 1/4
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• n coin tossing: X1, X2, ..., Xn

For any (xi) ∈ {0, 1}n,

Pr[X1 = x1 , X2 = x2 , ..., Xn = xn ] = 1/2n.

We say that

X1, ...., Xn: independent and identically distributed
or simply i.i.d
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• Event

· Event A:

10th coin is “HEAD”

or
A = {X10 = 1}.

· Event B:

# of heads = k

or
B = {X1 + · · ·+ Xn = k}.
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• Probability of events

Pr[X10 = 1] = 1/2 or Pr[A] = 1/2

Pr[X1 + · · ·+ Xn = k] =
(

n

k

)
2−n or Pr[B] =

(
n

k

)
2−n,

where
(
n
k

)
=the # ways of to take k objects out of n objects

(
n

k

)
=

n!
k!(n− k)!

“n choose k”
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• n biased coin tossing:

X1, ..., Xn : i.i.d.

Pr[Xi = 0] = 1− p and Pr[Xi = 1] = p

• Events & Probabilities

Pr[X10 = 1] = p

Pr[X1 + · · ·+ Xn = k] =
(

n

k

)
pk(1− p)n−k.

10



• Properties

For any two events A,B,

(a) If A ⊆ B, then
Pr[A] ≤ Pr[B].

E.g.
A = {X5 = 1, X11 = 0}, B = {X11 = 0}

Then A ⊆ B and

p(1− p) = Pr[A] ≤ Pr[B] = 1− p.

(b) For any two events, A and B

Pr[A ∪B] = Pr[A] + Pr[B]− Pr[A ∩B].
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In particular,
Pr[A ∪B] ≤ Pr[A] + Pr[B].

Generally,

(Boole’s Inequality) For events A1, ...., Am,

Pr[∪m
i=1Ai] ≤

m∑

i=1

Pr[Ai].
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• Random variables (RV)

E.g.

· S = X1 + · · ·+ Xn where X1, ..., Xn : i.i.d. and

Pr[X1 = 0] = 1− p and Pr[X1 = 1] = p.

· k (indistinguishable) balls and n bins

Each ball is to be distributed uniformly at random

so that
Pr[ ith ball is in jth bin ] = 1/n

Define RV

X = # of balls in first 10 bins
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• Expectation of nonnegative integral valued RV X:

E[X] :=
∞∑

k=0

k Pr[X = k].

E.g. S = X1 + · · ·+ Xn

E[S] =
∞∑

k=1

k Pr[S = k]

=
n∑

k=1

k ·
(

n

k

)
pk(1− p)n−k = pn

Easy: Pr[X > 0] ≤ E[X],

Pr[X > 0] =
∞∑

k=1

Pr[S = k] ≤
∞∑

k=1

k Pr[S = k] = E[X].
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• Linearity of Expectation
For any RV’s X and Y ,

E[X + Y ] = E[X] + E[Y ].

More generally, for RV’s X1, ..., Xn,

E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn].

E.g.

E[S] = E[X1 + · · ·+ Xn] = E[X1] + · · ·E[Xn]

= p + · · ·+ p = pn.
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2. First Moment (Expectation) Method

For nonnegative integral valued RV X

Pr[X > 0] = E[1(X > 0)] ≤ E[X1(X > 0)] = E[X],

in particualr, if E[X] < 1, then

Pr[X = 0] ≥ 1− E[X] > 0.

On the other hand,

E[X] ≥ k =⇒ Pr[X ≥ k] > 0.

so that

there is an instance which makes X ≥ k
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2.1 Property B

A hypergraph H = (V, E) has Property B, or 2-colorable,
if ∃ a 2-coloring of V s.t.

no edge in H is monochromatic.

Theorem If a k-uniform hypergraph H has less than 2k−1 edges,
then H has property B.
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Theorem If a k-uniform hypergraph H has less than 2k−1 edges,
then H has property B.

Proof. Color each vertex, randomly and independently, either B
(blue) or R (red) with equal probability. For e ∈ H,

Pr[e is monochromatic] = 2−k+1 yields

E[# of monochromatic edges] = |H|2−k+1 < 1,

and hence
Pr[∃ no monochromatic edge] > 0.

Thus

∃ 2-coloring with no monochromatic edge.

¤
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2.2 Arithmetic progressions and van der

Waerden number W (k)

· Arithmetic Progression (AP) with k terms in {1, ..., n}
a, a + d, a + 2d, ..., a + (k − 1)d ∈ {1, ..., n}

Let W (k) be the least n so that, if {1, ..., n} is two-colored,

∃ a monochromatic AP with k terms

W (3) = 9, W (4) = 35,W (5) = 178, ...

van der Waerden (’27)

W (k) is FINITE for any k.

Theorem
W (k) ≥ 2k/2.
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Theorem
W (k) ≥ 2k/2.

Proof. Two-color {1, ..., n} randomly, say Red & Blue so that

Pr[i is colored Red] = Pr[i is colored Blue] = 1/2

independently of all j 6= i. For each k-term AP S in {1, ..., n},
Pr[S is monochromatic ] = 21−k.

Since there are at most n2/2 such S (WHY?), if

n < 2k/2

then
E[# of monochromatic S] ≤ (n2/2)21−k < 1,

and
Pr[∃ no monochromatic S] > 0.

¤
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2.3 Covering n-cube

n-cube Qn :

{−1, 1}n = {(xi) : xi = 1 or− 1, i = 1, ..., n}

Let X1, ..., Xm be (mutually) independent uniform random vectors
in Qn, in particular,

Pr[Xj = u] = 2−n for any u ∈ Qn.

Theorem If m = (1 + ε)n for ε > 0, then

Pr[∃w ∈ Qn with w ·Xj > 0 ∀j = 1, ..., m] ≤ 2−εn −→ 0,

as n → 0.
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Theorem If m = (1 + ε)n for ε > 0, then

Pr[∃w ∈ Qn with w ·Xj > 0 ∀j = 1, ..., m] ≤ 2−εn −→ 0,

as n → 0.

Proof. For w ∈ Qn, let Yw be the indicator RV for the event Aw

that w ·Xj > 0 for all j = 1, ...,m. Then

E[# of w with w·Xj > 0 ∀j = 1, ..., m] = E[
∑

w∈Qn

Yw] =
∑

w∈Qn

Pr[Aw].

As Xj ’s are mutually independent,

Pr[Aw] = Pr[w·Xj > 0 for all j = 1, ..., m] =
m∏

j=1

Pr[w·Xj > 0] ≤ (1/2)m.

Therefore, the probability is bounded by 2n−m = 2−εn.
¤

22



2.4 Ramsey Number R(s, t)

Recall, for a graph G,

ω(G): clique number of G (size of a largest clique)

α(G): independence number of G (size of a largest
independent set)
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R(s, t) := min{n : for every G on n vertices,

ω(G) ≥ s or α(G) ≥ t}

EASY

R(s, t) = R(t, s), R(2, t) = t

Greenwood & Gleason (’55):

R(3, 3) = 6, R(3, 4) = 9,

R(3, 5) = 14, R(4, 4) = 18

MORE:
R(3, 6) = 18, R(3, 7) = 23, R(3, 8) = 28,

R(3, 9) = 36, R(4, 5) = 25,

43 ≤ R(5, 5) ≤ 49
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There are

2
(n
2)

graphs on n vertices, where
(

n

2

)
= n(n− 1)/2 .

For example, if n = 28

2
(28

2 ) ≈ 6156563648 · · · · · ·
≈ 0.6156563648 · · · · · · × 10114

25



Ramsey(’30): R(s, t) is FINITE.

Skolem(’33), Erdős and Szekeres(’35):

R(s, t) ≤ R(s− 1, t) + R(s, t− 1)

and

R(s, t) ≤
(

s + t− 2
s− 1

)
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Theorem. If (
n

t

)
· 21−(t

2) < 1

then
R(t, t) > n.

Proof. Random graph G = G(n, 1/2):

Each of
(
n
2

)
edges in Kn is in G

with probability 1/2, independently of all other edges

For each subset T of size t, let AT be the event that T is a clique in
G. Then

Pr[ω(G) ≥ t] ≤ Pr[
⋃

T

AT ] ≤
∑

T

Pr[AT ].

Since T has
(

t
2

)
edges in it,

Pr[AT ] = 2−(t
2)
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and

Pr[ω(G) ≥ t] ≤
(

n

t

)
2−(t

2).

Similarly,

Pr[α(G) ≥ t] ≤
(

n

t

)
2−(t

2).

Thus

Pr[ω(G) ≥ t or α(G) ≥ t] ≤ Pr[ω(G) ≥ t] + Pr[α(G) ≥ t]

≤
(

n

t

)
21−(t

2) < 1,

which implies that

Pr[ω(G) < t and α(G) < t] > 0,

in particular, there is at least one such graph.

¤
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Using Stirling formula,

n! =
√

2πn eεn

(n

e

)n

,

where 1/(12n + 1) < εn < 1/(12n),

R(t, t) ≥ n = (1 + o(1))(t/e)2(t−1)/2 =
(1 + o(1))t

e
√

2
2t/2.

Hence

(1 + o(1))t
e
√

2
2t/2 ≤ R(t, t) ≤

(
2t− 2
t− 1

)
∼ c4t/

√
t.

BIG open problem:

lim
t→∞

R(t, t)1/t =???
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Even existence is not known.
√

2 ≤ lim inf R(s, s)1/s

≤ lim sup R(s, s)1/s ≤ 4
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Theorem If (
n

s

)
p(s

2) +
(

n

t

)
(1− p)(

t
2) < 1

for some 0 ≤ p ≤ 1, then

R(s, t) > n.

Proof. Exercise (take each edge with probability p.)

¤

For fixed s,

R(s, t) ≥ cs

(
t

log t

)(s−1)/2

.
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2.5 Independence numbers of graphs

Theorem (Turán) For a graph G = (V,E) with |V | = n and the
average degree t(G) = 1

n

∑
v∈V d(v)

α(G) ≥ n

t(G) + 1
.

(A probabilistic) Proof.

Randomly order all vertices of G,

Take the first vertex v1 and delete all verts in its nbd N(v).

Take the next undeleted vertex and do the same.
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Let I be the independent set obtained. Enough to show that

E[|I|] ≥ n

t + 1
,

Note that

E[|I|] = E[
∑

v

1(v ∈ I)] =
∑

v

Pr[v ∈ I] .

where

1(v ∈ I) =





1 if v ∈ I

0 if v 6∈ I.
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If a vertex v precedes all verts in N(v) then

v ∈ I.

The corresponding probability is

1
d(v) + 1

.

We have

Pr[v ∈ I] ≥ 1
d(v) + 1

.

Thus

E[|I|] ≥
∑

v

1
d(v) + 1

≥ n

(1/n)
∑

v d(v) + 1
=

n

t + 1
.

by Jensen’s Ineq.. ¤
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2.6 Markov Inequality

Theorem 1 (Markov Inequality) For a random variable X ≥ 0,

Pr[X ≥ λ] ≤ E[X]
λ

.

Proof.

Pr[X ≥ λ] ≤ E[(X/λ)1(X ≥ λ)] ≤ E[X/λ] = E[X]/λ,

where

1(X ≥ λ) =





1 if X ≥ λ

0 otherwise.

Note that
E[1(X ≥ λ)] = Pr[X ≥ λ].
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2.7 Occupancy Problems

Occupancy Problems: Insert each of m balls to n distinct bins
uniformly at random. Two question:

• What is the maximum number of balls in any bin?

• What is the expected number of bins containing k balls in
them.

Consider the case m = n. For all i = 1, 2, · · · , n,

Xi = # of balls in the i-th bin.

Then
E[Xi] =??.
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Note that

Pr[Xi = 1] =
(

n

1

)
(1/n)(1− 1/n)n−1,

in general,

Pr[Xi = j] =
(

n

j

)
(1/n)j(1− 1/n)n−j .

Thus

E[Xi] =
n∑

j=1

(
n

j

)
(1/n)j(1− 1/n)n−j = 1.

Or, since
∑n

i=1 Xi = n, in particular,
∑n

i=1 E[Xi] = n, and all
E[Xi]’s are the same, E[Xi] = 1.
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Recall m = n and Xi is the number of balls in the i-th bin,
i = 1, 2, · · · , n.

For which value k does no bin receive
more than k balls with high probability?

Since

Pr[Xi = j] =
(

n

j

)
(1/n)j(1− 1/n)n−j ,

and Stirling formula gives

j! = (1 + O( 1
j ))

√
2πj

(j

e

)j

,

we have

Pr[Xi ≥ `] ≤ (1 + O(1
` ))

∑

j≥`

(e/j)j ≤ c(e/`)`.
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Thus, (e/`)` ≤ n−2 implies that

Pr[∃ Xi ≥ `] ≤
∑

i

Pr[Xi ≥ `] ≤ n · cn−2 ¿ 1.

Theorem With probability at least 1−O(1/n), no bin has more
than d(e ln n)/ ln lnne balls in it.
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Exercise For m = n log n, show that with probability 1− o(1)
every bin contains O(log n) balls.
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3 Methods of conditional events

3.1 Property B & Recoloring

Recall that

a hypergraph H = (V,E) has Property B, or 2-colorable,
if ∃ a 2-coloring of V

s.t. no edge in H is monochromatic.

Have proved: Any k-uniform hypergraph with |H| < 2k−1 have
property B.
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Theorem (Beck ’78) If a k-uniform hypergraph H has at most

ck1/3(ln k)−1/22k−1

edges, then H has property B for any constant c <
√

3.
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Remark:

Radhakrishnan & Srinivasan (’99)

If

|H| ≤ 0.7
( k

ln k

)1/2

2k

then then H has property B.

On the other hand,

∃ non-2-colorable k-uniform
hypergraph with ck22k edges

Proof. Ex. (Take random m = ck22k k-subsets of {1, ..., k2} and
use the first moment method.)
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Let

f(k) = min{m : ∃ non-2-colorable k-uniform
hypergraph with m edges }.

Then

0.7
( k

ln k

)1/2

2k ≤ f(k) ≤ ck22k.
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Proof. Let p = ln k/(3k) and t = ck1/3(ln k)−1/2, where c is a
constant <

√
3 . Then

2te−pk + t2pepk < 1.

We need to show that if

|H| ≤ t2k−1

then H has property B.
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Color each vertex, randomly and independently, either B (blue) or
R (red) with equal probability (as before).

Call this “first coloring”

Let W be the set all vertices which belong to at lease one
monochromatic edge.

Independently change the color of each v ∈ W with probability p

Call this “recoloring”
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An edge e after recoloring is monochromatic by two reasons:

1. Event Ae : e is monochromatic in both the first coloring and the
recoloring

Pr[Ae] = Pr[e monoch. in first col. ]

·
(

Pr[ no color in e is changed (in the recol.)]

+ Pr[ all colors in e is changed (in the recol.)]
)

= 21−k((1− p)k + pk)

≤ 21−k(2(1− p)k) ≤ 22−ke−pk

and
Pr[∃ such e] ≤ |H|22−ke−pk ≤ 2te−pk.
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2. Event Be : ∃∅ 6= U0 ⊆ e s.t.

in the first col, e \ U0 was red and U0 was blue,

and

in the recol. all col. in e \ U0 remains the same and
all col. in U0 are changed,

or the same with red/blue reversed.

Notice that this case also requires at least one edge, say f , with

f ∩ e 6= ∅, f ∩ e ⊆ U0, and f is blue monoch.
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Let U = U0 \ f . Then the case implies that ∃f, U(possibly ∅) with
e ∩ f 6= ∅ and U ⊆ e \ f s.t. the event BefU that

in the first col., e \ (U ∪ f) was red, U ∪ f was blue

and

in the recol., all col. in e \ (U ∪ f) remains the same
and all col. in U ∪ (e ∩ f) are changed,

or the same with red/blue reversed, occurs.
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Since
Pr[BefU ] ≤ 21−2k+|e∩f |p|e∩f |+|U |,

we have

Pr[∪efUBefU ] ≤
∑

e

∑

f :e∩f 6=∅

∑

U :U⊆e\f
Pr[BefU ].

It follows that

∑

U :U⊆e\f
Pr[BefU ] ≤

k−|e∩f |∑
u=0

(
k − |e ∩ f |

u

)
· 21−2k+|e∩f |p|e∩f |+u

= 21−2k+|e∩f |p|e∩f |(1 + p)k−|e∩f |

≤ 21−2kepk
( 2p

1 + p

)|e∩f |
.
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Thus
∑

U :U⊆e\f
Pr[BefU ] ≤ 21−2kepk

( 2p

1 + p

)|e∩f |
≤ 22−2kepkp

yields

Pr[∪eBe] ≤ Pr[∪efUBefU ] ≤
∑

e

∑

f :e∩f 6=∅
22−2kpepk

≤ |H|222−2kpepk

≤ t2pepk,

and hence

Pr[∪eAe ∪ ∪e,f,UBefu] ≤ Pr[∪eAe] + Pr[∪e,f,UBefu]

≤ 2te−pk + t2pepk < 1. ¤
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3.2 Independence numbers of sparse graphs

Theorem (Ajtai, Komlós and Szemerédi (’81))
For a triangle-free graph G,

E[|I|] ≥ cn log t

t

(t = t(G): the average degree).

Ex. This implies that

R(3, t) ≤ c′t2

log t
.
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For a graph G, let I denote the set of all independent sets of G.
Take an independent set I in I uniformly at random so that

Pr[I = J ] =
1
|I| ∀J ∈ I.

I : (uniformly) random independent set

Theorem (Shearer) For a Kr-free graph G,

E[|I|] ≥ crn log t

t log log t
.
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Proof of AKS Theorem. (Alon’s version of Shearer’s proof)
Assume maxdeg(G) ≤ 2t (WHY?). For v ∈ V (G), let

Xv =





t if v ∈ I

|N(v) ∩ I| otherwise,

or equivalently,

Xv := t1(v ∈ I) +
∑
w∼v

1(w ∈ I) .

Note that
∑

v∈V (G)

Xv = t|I|+
∑

v∈V (G)

∑
w∼v

1(w ∈ I)

≤ t|I|+ 2t|I| = 3t|I|
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Enough to show that
E[Xv] ≥ c log t,

for this implies

3tE[|I|] ≥ E[
∑

v

Xv] ≥ cn log t.

Let J = I \ ({v} ∪N(v)), we will show that

E[Xv|J ] ≥ c log t .
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E[Xv|J ] =
t

1 + 2r
+

(r/2)2r

1 + 2r
.
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If 2r ≤ t/ log t− 1, then

t

1 + 2r
≥ log t .

If 2r ≥ t/ log t− 1, then

(r/2)2r

1 + 2r
∼ r/2 ≥ log t− log log t .

¤
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