3 Methods of conditional events

3.1 Property B & Recoloring

Recall that

a hypergraph H = (V, F/) has Property B, or 2-colorable,
if 4 a 2-coloring of V'
s.t. no edge in H is monochromatic.

Have proved: Any k-uniform hypergraph with |H| < 2*~1 have

property B.
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Theorem (Beck '78) If a k-uniform hypergraph H has at most

ckl/?’(ln k)_1/22k_1

edges for a constant ¢ < v/3, then H has property B.




Remark:
Radhakrishnan & Srinivasan (2000)

If

ko 1/2
H| < 0.7(—) ok
‘ |_ In k

then then H has property B.
On the other hand,

4 non-2-colorable k-uniform

hypergraph with ck?2* edges

Proof. Ex. (Take random m = ck?2" k-subsets of {1,
use the first moment method.)



f(k) = min{m : 3 non-2-colorable k-uniform

hypergraph with m edges }.

k 1/2 k 20k
A — < < :
07(1nk> ok < £(k) < ck?2




Proof. Let p =Ink/(3k) and ¢t = ck*/3(Ink)~'/2, where c is a
constant < v/3. Then

ote Pk 4+ t2pePt < 1.

We need to show that if

|H| < t2F!

then H has property B.




Color each vertex, randomly and independently, either B (blue) or
R (red) with equal probability (as before).

Call this “first coloring”

Let W be the set all vertices which belong to at lease one

monochromatic edge.
Independently change the color of each v € W with probability p

Call this “recoloring”




An edge e after recoloring is monochromatic by two reasons:

1. Event A, : e is monochromatic in both the first coloring and the

recoloring

Pr[A.] Prle monoch. in first col. ]

-(Pr[ no color in e is changed (in the recol.)]

+ Pr| all colors in e is changed (in the recol.)])

2'7M((1 —p)* +p")
21—k(2(1 L p)k) < 22—k6—pk

Pr[3d such e] < |H|2? Fe Pk < 2te P,




2. Event B, : 30 £ Uy C e s.t.

in the first col, e \ Uy was red and Uy was blue,

in the recol. all col. in e \ Uy remains the same and

all col. in Uy are changed,

or the same with red/blue reversed.

Notice that this case also requires at least one edge, say f, with

fne#0, fNneC Uy, and f is blue monoch.




Let U = Uy \ f. Then the case implies that 3f, U (possibly () with
eNf#0and U Ce\ f s.t. the event By that,

in the first col., e\ (U U f) was red, U U f was blue

in the recol., all col. in e \ (U U f) remains the same
and all col. in U U (eN f) are changed,

or the same with red/blue reversed, occurs.




Since

Pr[B.su] < 21—27~€+|€ﬂf"|pleﬂf"|+|U|7

we have

PrUcsuBesu] <Y > Y Pr[Begyl.

e fieNf#AOU:UCe\f

It follows that

k—|eNnf]

k—lenf B . . 5
9 ( | |).21 2K Hlen | plen|+

Uu
u=0

21—2k—i—|eﬂf|p|er‘|f| (1 + p)k—|eﬂf|

o1—2k ,pk (2_p> |eﬂf|.
1+p
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and hence

Pr|UcAe U U .U Beful

e f:eNf#£0D

|H‘222—2]€p€pk

t*peP*,

PI’[UGAG] + Pr[Ue,f,UBefu]
ote PP + t2pePt < 1.

]
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3.2 Independence numbers of sparse graphs

Theorem (Ajtai, Komlos and Szemerédi (’81))
For a triangle-free graph G,

cnlogt

Bl > =

t(G): the average degree).

Ex. This implies that
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For a graph GG, let Z denote the set of all independent sets of G.

Take an independent set I in Z uniformly at random so that

1

I : (uniformly) random independent set

Theorem (Shearer) For a K,.-free graph G,

logt
B > =5
tloglogt
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Proof of AKS Theorem. (Alon’s version of Shearer’s proof)
Assume mazxdeg(G) < 2t (WHY?). For v € V(G), let

t itvel
|IN(v) N I| otherwise,

Xy =

or equivalently,

X,=tllvel)+ > Lwel).

wnyv

Note that

= I+ > > L wel

veV(G) w~v
t|I] + 2t|I] = 3t|1|




Enough to show that
E[X,] > clogt,

for this implies

BLE[I]] > E[) X,] > cnlogt.

Let J =1\ ({v} UN(v)), we will show that

E[X,|J] > clogt .

Let r be the number of vertices in N (v)
to which no vertex in J is adjacent.
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If 2" <t/logt — 1, then

If 2" > t/logt — 1, then

(r/2)2"

1+ 27

~1r/2>clogt —loglogt .




3.3 Covering hypercube

Recall

n-cube @, :

{-1,1}"={(z,):x, =1or—1,i=1,...,n}

Let X1, ..., X,, be (mutually) independent uniform random vectors

in (), in particular,

Pr[X; =u|=2"" forany u € Q,.

Theorem If m = (1 4 ¢)n for € > 0, then
Prl3we @, withw-X,;, >0 Vj=1,...,m|] <27°" — 0,

as n — OQ.
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e Motivation: Neural Networks

Consider voice recognition (of the brain)

How the brain recognizes

Voice 1, Voice 2, ..., Voice m.

WANT to store)

Voice 1, Voice 2, ..., Voice m so that ... .
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Voice 1 = X Voice 2 = X

XM =(1,-1,...,1)

X® = (-1,-1,....—1)

To store = To find a weight matrix J (between neurons)

which satisfies certain properties

The weight matrix J = (J;;) is a (matrix-valued) function of
X0 x@ o xim)

(We always assume J;; = 0. )
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A1. Neural network models, or simply neural networks, are
interconnected systems of neurons with binary activity. That is,

XWeqQ,={-1,1}"

A2. A neural network evolves using certain weights, called

synaptic weights (or learning rules), between neurons.

A3. Interconnections among the neurons collectively encode
information. That is, J = J(X1), .., X (M),
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HOW to find the closest X () 2?77

1. Compute all the Hamming distances

dp (Y, XM, dg(Y,X®), ..., dg(Y,X™)

2. Evolution

Y,
F;(Y(t)) for t=1,2,..

O.K. if Y(t) converges to X (¥ for some 3.
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Suppose the weight matrix J is given.

Define F; = (f1,..., fn) : Qn — Qn s.t.

fi(Y) :=sgn(> _ Ji;Y;)

g=1

1 it z>0

enle) = 1 ifz<0
— 11 2 .
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HOW to find the closest X (9 ?

1. Compute all the Haomming distances

da (Y, XW),dy (Y, X®), ... du(Y, X™).

2. Evolution

= Y,
= Fy(Y()) for t=1,2,..

O.K. if Y(t) converges to X (¥ for some 3.




e Evolution

Y,
F;(Y(t)) for t=1,2,..

O.K. if Y(t) converges to X () for some 3.

That is,

Y#)=Y(t+1) =X

for some t.
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Necessary and Sufficient Conditions:
Fixed Point Property:
All X have to be fixed points of Fy, that is,

Fy( Xy =x@

Attracting Property:
All X have to be attractive.
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In ideal cases,

we need only O(loglogn) evolutions.

Note that

n~ 101 .

loglogn ~ 3.23 .




For Fixed Point Property
WANT a weight matrix J such that

Fr X =X forall r=1,...m.

That is, forallr=1,...m ,i1=1,...,n,

X" = sgn() Jinj('T)) :

j=1

or equivalently,

ZJUX](-T)XZ-(T) >0 forallr=1,..,m.
j=1
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Let i = 1 and XY) = 1. Then (1) becomes

Z Jle](r) >0 forallr=1,..,m.
j=2

Problem:

Is there w € @, with w-X; >0 Vj=1,...,m?

Pyp(n,m) =PrFwe @, withw-X; >0 Vj=1,...,m,

for i.i.d uniform random vector X, ..., X,, in @J,,. One may
similarly define

Ps s(n,m)=Pr[Fwe S,_; withw-X; >0 Vj=1,..,m,

for i.i.d uniform random vector X, ..., X, in S,,_1, and Py 5, Ps .
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Wendel (’62)

— (k-1
PS,S<n,k>=2"““Z( . )
[/
1=0

Fiiredi(’86)

n—1
Pb,s(nv k) = 27+l Z (k B 1) + O(n_l/Q) :

: 1
1=0
Kahn, Komlés and Szemerédi(’93)

n—1 L_1
Pb,S(na k) = 27k Z ( 1 )
1=0

+ 0((0.99910)"n?) .




Tao & Vu (2005)

Pb,s(n, k)

In particular,
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(K & Roche '98) For ¢ = 0.0037,

lim Pb,b(n, (1 — 8) ) =0 y

n—oo

and, for p = 0.005,

lim Pyy(n,pn)=1.

n—oo
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For the proof of
lim Pb,b(n, (1 — 8) ) = O,

n—oo

let W € @),, be fixed and assume

WX =3"W;X;; >0, Vi=1,..

j=1

where X;; = X]@. Then, for

k
Uj = ZXZ] and U := (UJ) ,

1=1




we have




On the other hand, if € is small enough,

then
DI WXy~ (U
=1 j=1 j

Together with

WiXijl = WU,
=1

this gives

Thus

Pop(n,(1—e)n) S Y Priw-X; Vji=1,..,(1-¢)n]
w € Qn

w =~ sgnU
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Open problems:

Conjecture. There ¢ > 0 such that

lim Py y(n,(c—4d)n)

n—oo

lim Py y(n, (c+d)n)

n—oo

c =777 if exists

Krauth and Opper (’89)

A simulation up to n < 25 predicts ¢ =~ .82.

Krauth and Mézard (’89)

The replica method with so-called symmetry breaking, which is not

rigorous, gives c ~ .83.




4 Second Moment Method

4.1 Two examples

Let X be a nonnegative integral valued RV.
Pr| X = 0] =777
E.g.
X = # of 2-colorings satisfying certain properties
If E[X]— 0, then
0 <PrlX > 0] < EX]

yields

If
E[X] =100 77?7




Pr[Y = 0] = 0.999, Pr[Y = 10°] = 10~*

Pr[Y = 0] = 0.999.

Notice that E[X] = E[Y] = 100 but

o?(Y) =10 .10"* — (100)* = 10°® — 10* ~ 10°.




4.2 Chebyschev’s Inequality:

For any positive A and any RV X,

Pr{|X — p| > Ao <

1
A2

Proof. Note that
Pr(|X — p| > Xo] = Pr[|X — p|? > X067

Markov Ineq. implies that

El|X — pul? 1
PI‘[|X—,LL|2 2)\20_2] S [‘)\202 | ] _ p

Corollary For a nonnegative integral valued RV X,

0*(X)

Pr[X = 0] < <P
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Proof. Taking A = u/o,

Pr[X = 0] < Pr[|X — p| > Ao] < 1/X% = 0% /p°.

Corollary If

0%(X) < E[X]?, or equivalently

Pr(X > 0] — 1.
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4.3 Arithmetic Progression

Let A = A(n,p) be a random subset of {1,...,n} such that each
i € {1,...,n} independently belongs to A with probability p, that is,

Prli € Al = p.

Theorem For fixed positive integer k > 2,

0 ifp<n 2k

Pr[A contains a k-term AP] —
1 ifp>n2/F

The property that A contains a k-term AP

has a threshold function n—2/F.
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Proof. Let ¢(n, k) be the number of k-term AP’s in {1,...,n
Then

¢(n, k) = ©(n?).

For the set {S1, ..., Sp(n.k)} of k-term AP’s with a certain order, we
define

1 if all ele. of S; are in A

0 otherwise

and the number of k-term AP’s in A

X:ZXi.

ZE o(n, k)p® = O(n?ph).

If p < n2/*

Pr[A contains a k-term AP] = Pr[X > 0] < F[X]| —
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If p > n=2/k,
EX] — oo,

NEED variance: It is enough to show that

0*(X)

0%(X) < E[X]?, or EX

Notice that

E[X? — E[X)?

If S;NS; =0, then

COV(XZ',X]') = E[XzX]] — E[XZ]E[ | = p2k —pkpk = 0.




If |S; N.S;| =1, then
cov(X, X;) = BIX;X,) - EIX][X,) < 5,
If |S; NS;| > 1, then we use a trivial bound
cov(X;, X;) = E[X;X;] — B[ X;]F]

Using

ZCOV(XZ',XJ') — Z ( Z cov(X;, X;)

() j:SiﬁSj:(b

+ Z COV(XZ',X]') + Z COV(Xian)>7

j:lSimSﬂ:l j:|SiﬂSj|>1

and, for fixed 1,
{7 : 1SN S5] =1} = O(n),
{7+ [Sin S5 > 1} = O(1),
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we have

Zcov Xi, X;)

0(32k1

o*(X) = O(n”

and p > n~2/% yields

2[%3 o

1

+ np

)-
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4.4 Random graph G(n,p)

Each of (g) edges is independently in G(n,p) with pr. p.
For a fixed graph G with m edges,

Pr[G(n,p) = G] = p™(1 — p){z) ™.

Theorem For G = G(n,p),

0 if pn™?/3

Prlw(G) > 4] —
1 if p>n2/3.

( The property w(G) > 4 has a
threshold function n=2/3. )




4.5 Randomized Selection
S: a set of n distinct elements
Select the kth smallest element in S.

Note that there are sorting Algorithms with running time
O(nlogn).

Notation: For t € S,

rs(t) = the rank of ¢
S(7) = the element t € S with rg(t) = 1.

LazySelect Algorithm:
Input: A set of n distinct elements.
Output: The kth smallest element in S, S(k).
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Algorithm for k = n/2:

1. Choose n®/* elements from S uniformly at random with
replacement. Denoted by T is the (multi)set of the elements.

2. Sort T in O(n3/*logn) steps using any optimal sorting

algorithms.

. Let x = kn=Y4=n3/4/2 For { = |2 — /n| and h = [z + /1],
choose a = T'(¢) and b =T (h).
By comparing a and b with all elements of S, determine rg(a)
and 7rg(b).

It

1n — 3/4 3 3/4
L sl <2 <rs() < L (2)

then set P={y € S |a <y <b} and sort P in O(|P|log|P|)
steps to identify P(n/2 —rg(a) + 1), which is S(n/2).
If not, repeat Steps 1-3 until (2) holds.
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Theorem With probability 1 — O(n~1/%), the LazySelect finds
S(n/2) on the first pass through step 1-5. Thus, it performs only
(2 4+ o(1))n comparisons.

Proof. (Probability of failure) .
It is enough to show that

Pr(|rs(a) — (n/2 —n®")| 2 n*/*/2] = O(n~1%)
and Pr[lrs(b) — (n/2 +n3/4)| > n3/4/2] = O(n=1/%)
(WHY?). We prove only

Pr [rg(a) < = O(n~ %),

n — 3n3/4
=

Other inequalities may be obtained by similar arguments.

Clearly, rg(a) < n/2 — 3n3/4/2 implies that T contains at least
n3/4/2 — nl/? elements less than or equal to the (n/2 — 3n3/4/2)th

element in S.
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Let X; = 1 if the i*® sample of T is less than or equal to
S(n/2 — 3n3/*/2), and 0 otherwise. Then X;’s are i.i.d with

1 —3n—1/4 14 3p7 A

9 and PI‘[XZ = O]

2
n3/4
Then, for X => ., X,

n — 3n3/4
2

Pr [rs( ) <

} < Pr {X 2n3/4/2—n1/2}.

n3/4_3,1/2

As F|X]| = 5

and

n3/4
BIX’ - EXP = Y E[X.X,] - E[X/]E|

n3/4

91



Chebyschev’s Inequality yields

Pr | X 27@3/4/2—711/2} <

n3/4/3

(7227~

— O(n_1/4).

92



4.6 The coupon Collector’s Problem

There are n types of coupons and at each trial a coupon is chosen

uniformly at random.
How many trials are needed to get all coupons?

General example of waiting for combinations of events to happen.
Expected case analysis:

Elementary Analysis: For any 0 <:<n —1,

X; = number of trials to get (i + 1)*® new

coupon after getting ¢ coupons.

n—1

Then, X = > ._; X; is the random variable representing the
number of trials needed to get all coupons.

e Distribution of X;:
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where the success probability p, = “—.
That is, X; is geometrically distributed with parameter p..

In particular,

n

.
n—1

E[X;]=> tp(1-p) ' =1/p,
/=1

and hence

> — —niéznﬂnznbgmm )

— 1 —1 :
1=0 1=1

For the variance of X, notice that X, are independent. thus

o2(X) = 202()@.).




Therefore, the Chebyschev inequality gives

X =nlnn+ O(n)

with high probability.
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4.7 The Coupon Collector’s Problem vs.

The Occupancy Problem

Occupancy Problems:

Insert each of m balls to n

distinct bins uniformly at random.

Theorem 2 If m = nlnn + cn, then

e—C

Pr| 3 empty bin | — 1 —e"¢ |
(as n — 00).

Corollary 3 For the number of trials X for the coupon collector’s

problem and m = nlnn + cn,

—C

Prl X >m| - 1—¢e"°
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Poisson Approximation

e Properties of Poisson random variables

Property 1: If X,Y are independent Poi(\) and Poi(u),
respectively, then X + Y is a Poi(A + p).




Property 2: The ‘converse’ is also true.
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Property 2: The ‘converse’ is also true.

Let W be a Poi(p). We take W balls and color each ball red with
probability p and blue with probability 1 — p, independently of the

others. Let A =pp and p = (1 — p)p. Then the numbers X,Y of

red and blue balls, respectively, are independent Poi(\) and Poi(u),

respectively.
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Proof. We need to show that
X

PriX =i,V =j]l=e
1.

(pp)
i

e

Using p = A+ p and pp = A, (1 — p)p = u, we have that
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Generally,

if X;’s are independent Poi(\;)’s
then ) X; is a Poi(D)_ \;).

Conversely,

Let W be a Poi(p).
Take W balls and color each ball 7 with

probability p,, Y p. = 1, independently of the others. Denote X; to

be the numbers of balls colored 7.

Then X;’s are independent Poi(\;)’s, where \; = p. p,
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Proof of Theorem 2 Take a Poisson random variable M; with
mean m, = m — n'/?1n*n. Notice that

Pr[M; > m] — 0.

We choose M, balls and insert each of them to the n bins uniformly
at random. Then, the numbers Y; of balls in the i*" bins are i.i.d
Poisson \, :=m, /n =Inn + ¢+ o(1) random variables. Thus

Pr| 3 empty bin | < Pr, | 3 empty bin|M; < m)|
< (I4+0(1)1—=PrlY; >0 Vi)

For
Pr[Y; >0 V4] =Pr[Y; > 0]" = (1 —e M),

and
—C

_ e—lnn—c—l—o(l) _ (1 + 0(1))6
n

Y

we have

(1—e)" = (14 o(1))e
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Therefore,

C

Pr[ 3 empty bin | < (1 4+ 0(1))(1 —e® ).

Similarly, we may take a Poisson random variable My with mean

1/2

m, =m 4+ n'/?1n° n, and choose M, balls to obtain

Pr| 3 empty bin | > Pr,| 3 empty bin|M; > m)|
> 1—-Pr[Z; >0 Vi]+o0(1),

for the numbers Z; of balls in the i*" bins, which are i.i.d. Poisson

random variables with mean A\, = m,/n =1Inn + c+ o(1).

]
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4.8 Perfect matchings in random uniform

hypergraphs
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