
3 Methods of conditional events

3.1 Property B & Recoloring

Recall that

a hypergraph H = (V, E) has Property B, or 2-colorable,

if ∃ a 2-coloring of V

s.t. no edge in H is monochromatic.

Have proved: Any k-uniform hypergraph with |H| < 2k−1 have

property B.
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Theorem (Beck ’78) If a k-uniform hypergraph H has at most

ck1/3(ln k)−1/22k−1

edges for a constant c <
√

3, then H has property B.
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Remark:

Radhakrishnan & Srinivasan (2000)

If

|H| ≤ 0.7
( k

ln k

)1/2

2k

then then H has property B.

On the other hand,

∃ non-2-colorable k-uniform

hypergraph with ck22k edges

Proof. Ex. (Take random m = ck22k k-subsets of {1, ..., k2} and

use the first moment method.)
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Let

f(k) = min{m : ∃ non-2-colorable k-uniform

hypergraph with m edges }.

Then

0.7
( k

ln k

)1/2

2k ≤ f(k) ≤ ck22k.
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Proof. Let p = ln k/(3k) and t = ck1/3(ln k)−1/2, where c is a

constant <
√

3 . Then

2te−pk + t2pepk < 1.

We need to show that if

|H| ≤ t2k−1

then H has property B.
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Color each vertex, randomly and independently, either B (blue) or

R (red) with equal probability (as before).

Call this “first coloring”

Let W be the set all vertices which belong to at lease one

monochromatic edge.

Independently change the color of each v ∈ W with probability p

Call this “recoloring”
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An edge e after recoloring is monochromatic by two reasons:

1. Event Ae : e is monochromatic in both the first coloring and the

recoloring

Pr[Ae] = Pr[e monoch. in first col. ]

·
(

Pr[ no color in e is changed (in the recol.)]

+ Pr[ all colors in e is changed (in the recol.)]
)

= 21−k((1 − p)k + pk)

≤ 21−k(2(1 − p)k) ≤ 22−ke−pk

and

Pr[∃ such e] ≤ |H|22−ke−pk ≤ 2te−pk.
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2. Event Be : ∃∅ 6= U0 ⊆ e s.t.

in the first col, e \ U0 was red and U0 was blue,

and

in the recol. all col. in e \ U0 remains the same and

all col. in U0 are changed,

or the same with red/blue reversed.

Notice that this case also requires at least one edge, say f , with

f ∩ e 6= ∅, f ∩ e ⊆ U0, and f is blue monoch.
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Let U = U0 \ f . Then the case implies that ∃f, U(possibly ∅) with

e ∩ f 6= ∅ and U ⊆ e \ f s.t. the event BefU that,

in the first col., e \ (U ∪ f) was red, U ∪ f was blue

and

in the recol., all col. in e \ (U ∪ f) remains the same

and all col. in U ∪ (e ∩ f) are changed,

or the same with red/blue reversed, occurs.
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Since

Pr[BefU ] ≤ 21−2k+|e∩f |p|e∩f |+|U |,

we have

Pr[∪efUBefU ] ≤
∑

e

∑

f :e∩f 6=∅

∑

U :U⊆e\f

Pr[BefU ].

It follows that

∑

U :U⊆e\f

Pr[BefU ] ≤
k−|e∩f |

∑

u=0

(

k − |e ∩ f |
u

)

· 21−2k+|e∩f |p|e∩f |+u

= 21−2k+|e∩f |p|e∩f |(1 + p)k−|e∩f |

≤ 21−2kepk
( 2p

1 + p

)|e∩f |

.
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Thus

∑

U :U⊆e\f

Pr[BefU ] ≤ 21−2kepk
( 2p

1 + p

)|e∩f |

≤ 22−2kepkp

yields

Pr[∪eBe] ≤ Pr[∪efUBefU ] ≤
∑

e

∑

f :e∩f 6=∅

22−2kpepk

≤ |H|222−2kpepk

≤ t2pepk,

and hence

Pr[∪eAe ∪ ∪e,f,UBefu] ≤ Pr[∪eAe] + Pr[∪e,f,UBefu]

≤ 2te−pk + t2pepk < 1. �
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3.2 Independence numbers of sparse graphs

Theorem (Ajtai, Komlós and Szemerédi (’81))

For a triangle-free graph G,

E[|I|] ≥ cn log t

t

(t = t(G): the average degree).

Ex. This implies that

R(3, t) ≤ c′t2

log t
.
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For a graph G, let I denote the set of all independent sets of G.

Take an independent set I in I uniformly at random so that

Pr[I = J ] =
1

|I| ∀J ∈ I.

I : (uniformly) random independent set

Theorem (Shearer) For a Kr-free graph G,

E[|I|] ≥ crn log t

t log log t
.
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Proof of AKS Theorem. (Alon’s version of Shearer’s proof)

Assume maxdeg(G) ≤ 2t (WHY?). For v ∈ V (G), let

Xv =







t if v ∈ I

|N(v) ∩ I| otherwise,

or equivalently,

Xv := t1(v ∈ I) +
∑

w∼v

1(w ∈ I) .

Note that
∑

v∈V (G)

Xv = t|I| +
∑

v∈V (G)

∑

w∼v

1(w ∈ I)

≤ t|I| + 2t|I| = 3t|I|

54



Enough to show that

E[Xv] ≥ c log t,

for this implies

3tE[|I|] ≥ E[
∑

v

Xv] ≥ cn log t.

Let J = I \ ({v} ∪ N(v)), we will show that

E[Xv|J ] ≥ c log t .

Let r be the number of vertices in N(v)

to which no vertex in J is adjacent.
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E[Xv|J ] =
t

1 + 2r
+

(r/2)2r

1 + 2r
.

56



If 2r ≤ t/ log t − 1, then

t

1 + 2r
≥ log t .

If 2r ≥ t/ log t − 1, then

(r/2)2r

1 + 2r
∼ r/2 ≥ c log t − log log t .

�
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3.3 Covering hypercube

Recall

n-cube Qn :

{−1, 1}n = {(xi) : xi = 1 or − 1, i = 1, ..., n}

Let X1, ..., Xm be (mutually) independent uniform random vectors

in Qn, in particular,

Pr[Xj = u] = 2−n for any u ∈ Qn.

Theorem If m = (1 + ε)n for ε > 0, then

Pr[∃w ∈ Qn with w · Xj > 0 ∀j = 1, ..., m] ≤ 2−εn −→ 0,

as n → ∞.
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• Motivation: Neural Networks

Consider voice recognition (of the brain)

How the brain recognizes

Voice 1, Voice 2, ..., Voice m.

WANT to store)

Voice 1, Voice 2, ..., Voice m so that ... .
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Voice 1 = X(1), Voice 2 = X(2), .........

X(1) = (1,−1, ..., 1)

X(2) = (−1,−1, ...,−1)

· · · · · · · · ·

To store = To find a weight matrix J (between neurons)

which satisfies certain properties

The weight matrix J = (Jij) is a (matrix-valued) function of

X(1), X(2), ..., X(m).

(We always assume Jii = 0. )

60



A1. Neural network models, or simply neural networks, are

interconnected systems of neurons with binary activity. That is,

X(i) ∈ Qn = {−1, 1}n.

A2. A neural network evolves using certain weights, called

synaptic weights (or learning rules), between neurons.

A3. Interconnections among the neurons collectively encode

information. That is, J = J(X(1), ..., X(m)).
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HOW to find the closest X(i) ???

1. Compute all the Hamming distances

dH(Y, X(1)), dH(Y, X(2)), ..., dH(Y, X(m))

2. Evolution

Y (0) := Y,

Y (t + 1) := FJ(Y (t)) for t = 1, 2, ...

O.K. if Y (t) converges to X(i) for some i.
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Suppose the weight matrix J is given.

Define FJ = (f1, ..., fn) : Qn −→ Qn s.t.

fi(Y ) := sgn(

n
∑

j=1

JijYj) ,

where

sgn(z) :=







1 if z ≥ 0

−1 if z < 0.
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HOW to find the closest X(i) ?

1. Compute all the Hamming distances

dH(Y, X(1)), dH(Y, X(2)), ..., dH(Y, X(m)).

2. Evolution

Y (0) := Y,

Y (t + 1) := FJ(Y (t)) for t = 1, 2, ...

O.K. if Y (t) converges to X(i) for some i.
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• Evolution

Y (0) := Y,

Y (t + 1) := FJ(Y (t)) for t = 1, 2, ...

O.K. if Y (t) converges to X(i) for some i.

That is,

Y (t) = Y (t + 1) = X(i) ,

for some t.
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Necessary and Sufficient Conditions:

Fixed Point Property:

All X(i) have to be fixed points of FJ , that is,

FJ(X(i)) = X(i) .

Attracting Property:

All X(i) have to be attractive.
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In ideal cases,

we need only O(log log n) evolutions.

Note that

n ∼ 1011 .

So

log log n ∼ 3.23 .
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For Fixed Point Property

WANT a weight matrix J such that

FJ(X(r)) = X(r) for all r = 1, ..., m .

That is, for all r = 1, ..., m , i = 1, ..., n,

X
(r)
i = sgn(

n
∑

j=1

JijX
(r)
j ) ,

or equivalently,

n
∑

j=1

JijX
(r)
j X

(r)
i ≥ 0 for all r = 1, ..., m. (1)

(Jii = 0.)
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Let i = 1 and X
(r)
1 = 1. Then (1) becomes

n
∑

j=2

J1jX
(r)
j ≥ 0 for all r = 1, ..., m.

Problem:

Is there w ∈ Qn with w · Xj > 0 ∀j = 1, ..., m?

Let

Pb,b(n, m) = Pr[∃w ∈ Qn with w · Xj > 0 ∀j = 1, ..., m,

for i.i.d uniform random vector X1, ..., Xm in Qn. One may

similarly define

Ps,s(n, m) = Pr[∃w ∈ Sn−1 with w · Xj > 0 ∀j = 1, ..., m,

for i.i.d uniform random vector X1, ..., Xm in Sn−1, and Pb,s, Ps,b.
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Wendel (’62)

Ps,s(n, k) = 2−k+1
n−1
∑

i=0

(

k − 1

i

)

.

Füredi(’86)

Pb,s(n, k) = 2−k+1
n−1
∑

i=0

(

k − 1

i

)

+ O(n−1/2) .

Kahn, Komlós and Szemerédi(’93)

Pb,s(n, k) = 2−k+1
n−1
∑

i=0

(

k − 1

i

)

+ o((0.99910)nn2) .

70



Tao & Vu (2005)

Pb,s(n, k) = 2−k+1
n−1
∑

i=0

(

k − 1

i

)

+ o((3/4)nn2) .

In particular,

lim
n→∞

Pb,s(n, (2 − ε)n) = 1

lim
n→∞

Ps,s(n, (2 + ε)n) = 0

and

lim
n→∞

Ps,s(n, (2 − ε)n) = 1

lim
n→∞

Pb,s(n, (2 + ε)n) = 0.
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(K & Roche ’98) For ε = 0.0037,

lim
n→∞

Pb,b(n, (1 − ε)n) = 0 ,

and, for ρ = 0.005,

lim
n→∞

Pb,b(n, ρn) = 1 .
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For the proof of

lim
n→∞

Pb,b(n, (1 − ε)n) = 0,

let W ∈ Qn be fixed and assume

W · X(i) =
n

∑

j=1

WjXij ≥ 0, ∀ i = 1, ..., k,

where Xij = X
(i)
j . Then, for

Uj :=
k

∑

i=1

Xij and U := (Uj) ,
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we have

k
∑

i=1

|
n

∑

j=1

WjXij | =
k

∑

i=1

n
∑

j=1

WjXij

=
n

∑

j=1

k
∑

i=1

WjXij

=
n

∑

j=1

Wj

k
∑

i=1

Xij

=

n
∑

j=1

WjUj

= W · U
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On the other hand, if ε is small enough,

then
k

∑

i=1

|
n

∑

j=1

WjXij | ≈
∑

j

|Uj | .

Together with
k

∑

i=1

|
n

∑

j=1

WjXij| =

n
∑

j=1

WjUj ,

this gives

W ≈ (sgn(Uj)) =: sgnU .

Thus

Pb,b(n, (1 − ε)n) <∼
∑

w ∈ Qn

w ≈ sgnU

Pr[w · Xj ∀ j = 1, ..., (1 − ε)n]
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Pb,b(n, (1 − ε)n)

<∼
∑

u∈U

Pr[U = u]
∑

w∈Qn
w≈sgnu

Pr(w · Xj ∀ j = 1, ..., (1 − ε)n|U = u)
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Open problems:

Conjecture. There c > 0 such that

lim
n→∞

Pb,b(n, (c − δ)n) = 1

lim
n→∞

Pb,b(n, (c + δ)n) = 0 .

c =??? if exists

Krauth and Opper (’89)

A simulation up to n ≤ 25 predicts c ≈ .82.

Krauth and Mézard (’89)

The replica method with so-called symmetry breaking, which is not

rigorous, gives c ≈ .83.
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4. Second Moment Method

4.1 Two examples

Let X be a nonnegative integral valued RV.

Pr[X = 0] =???

E.g.

X = # of 2-colorings satisfying certain properties

If E[X] → 0, then

0 ≤ Pr[X > 0] ≤ E[X] → 0

yields

Pr[X = 0] → 1.

If

E[X] = 100 ????
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For

Pr[X = 99] = Pr[X = 101] = 1/2,

we have

Pr[X = 0] = 0.

IF

Pr[Y = 0] = 0.999, Pr[Y = 106] = 10−4

then

Pr[Y = 0] = 0.999.

Notice that E[X] = E[Y ] = 100 but

σ2(X) = 1, σ2(Y ) = 1012 · 10−4 − (100)2 = 108 − 104 ≈ 108.
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4.2 Chebyschev’s Inequality:

For any positive λ and any RV X,

Pr[|X − µ| ≥ λσ] ≤ 1

λ2

Proof. Note that

Pr[|X − µ| ≥ λσ] = Pr[|X − µ|2 ≥ λ2σ2]

Markov Ineq. implies that

Pr[|X − µ|2 ≥ λ2σ2] ≤ E[|X − µ|2]
λ2σ2

=
1

λ2
. �

Corollary For a nonnegative integral valued RV X,

Pr[X = 0] ≤ σ2(X)

E[X]2
.
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Proof. Taking λ = µ/σ,

Pr[X = 0] ≤ Pr[|X − µ| ≥ λσ] ≤ 1/λ2 = σ2/µ2.

�

Corollary If

σ2(X) � E[X]2, or equivalently
σ2(X)

E[X]2
→ 0

then

Pr[X > 0] → 1.
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4.3 Arithmetic Progression

Let A = A(n, p) be a random subset of {1, ..., n} such that each

i ∈ {1, ..., n} independently belongs to A with probability p, that is,

Pr[i ∈ A] = p.

Theorem For fixed positive integer k ≥ 2,

Pr[A contains a k-term AP] →







0 if p � n−2/k

1 if p � n−2/k
.

The property that A contains a k-term AP

has a threshold function n−2/k.
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Proof. Let φ(n, k) be the number of k-term AP’s in {1, ..., n}.
Then

φ(n, k) = Θ(n2).

For the set {S1, ..., Sφ(n,k)} of k-term AP’s with a certain order, we

define

Xi =







1 if all ele. of Si are in A

0 otherwise

and the number of k-term AP’s in A

X =
∑

i

Xi.

Then

E[X] =
∑

i

E[Xi] = φ(n, k)pk = Θ(n2pk).

If p � n−2/k,

Pr[A contains a k-term AP] = Pr[X > 0] ≤ E[X] −→ 0.
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If p � n−2/k,

E[X] −→ ∞,

NEED variance: It is enough to show that

σ2(X) � E[X]2, or
σ2(X)

E[X]2
−→ 0.

Notice that

E[X2] − E[X]2 = E[
∑

i,j

XiXj ] −
∑

i,j

E[Xi]E[Xj]

=
∑

i,j

E[XiXj ] − E[Xi]E[Xj ].

If Si ∩ Sj = ∅, then

cov(Xi, Xj) := E[XiXj ] − E[Xi]E[Xj ] = p2k − pkpk = 0.
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If |Si ∩ Sj | = 1, then

cov(Xi, Xj) = E[XiXj ] − E[Xi][Xj] ≤ p2k−1.

If |Si ∩ Sj | > 1, then we use a trivial bound

cov(Xi, Xj) = E[XiXj ] − E[Xi]E[Xj ] ≤ E[Xi] = pk.

Using
∑

i,j

cov(Xi, Xj) =
∑

i

(

∑

j:Si∩Sj=∅

cov(Xi, Xj)

+
∑

j:|Si∩Sj |=1

cov(Xi, Xj) +
∑

j:|Si∩Sj |>1

cov(Xi, Xj)
)

,

and, for fixed i,

|{j : |Si ∩ Sj | = 1}| = O(n),

|{j : |Si ∩ Sj | > 1}| = O(1),
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we have
∑

i,j

cov(Xi, Xj) = O(n3p2k−1 + n2pk).

Thus,

σ2(X) = O(n2pk + n3p2k−1),

and p � n−2/k yields

σ2(X)

E[X]2
= O

( 1

n2pk
+

1

np

)

= o(1).

�
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4.4 Random graph G(n, p)

Each of
(

n
2

)

edges is independently in G(n, p) with pr. p.

For a fixed graph G with m edges,

Pr[G(n, p) = G] = pm(1 − p)(
n
2)−m.

Theorem For G = G(n, p),

Pr[ω(G) ≥ 4] →







0 if p � n−2/3

1 if p � n−2/3.

( The property w(G) ≥ 4 has a

threshold function n−2/3. )

Proof. Ex.
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4.5 Randomized Selection

S: a set of n distinct elements

Select the kth smallest element in S.

Note that there are sorting Algorithms with running time

O(n log n).

Notation: For t ∈ S,

rS(t) = the rank of t

S(i) = the element t ∈ S with rS(t) = i.

LazySelect Algorithm:

Input: A set of n distinct elements.

Output: The kth smallest element in S, S(k).
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Algorithm for k = n/2:

1. Choose n3/4 elements from S uniformly at random with

replacement. Denoted by T is the (multi)set of the elements.

2. Sort T in O(n3/4 log n) steps using any optimal sorting

algorithms.

3. Let x = kn−1/4 = n3/4/2. For ` = bx −√
nc and h = dx +

√
ne,

choose a = T (`) and b = T (h).

By comparing a and b with all elements of S, determine rS(a)

and rS(b).

4. If
1n − 3n3/4

2
≤ rS(a) ≤ n/2 ≤ rS(b) ≤ n + 3n3/4

2
, (2)

then set P = {y ∈ S | a ≤ y ≤ b} and sort P in O(|P | log |P |)
steps to identify P (n/2 − rS(a) + 1), which is S(n/2).

If not, repeat Steps 1-3 until (2) holds.
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Theorem With probability 1 − O(n−1/4), the LazySelect finds

S(n/2) on the first pass through step 1-5. Thus, it performs only

(2 + o(1))n comparisons.

Proof. (Probability of failure) .

It is enough to show that

Pr[|rS(a) − (n/2 − n3/4)| ≥ n3/4/2] = O(n−1/4)

and Pr[|rS(b) − (n/2 + n3/4)| ≥ n3/4/2] = O(n−1/4)

(WHY?). We prove only

Pr
[

rS(a) ≤ n − 3n3/4

2

]

= O(n−1/4).

Other inequalities may be obtained by similar arguments.

Clearly, rS(a) ≤ n/2 − 3n3/4/2 implies that T contains at least

n3/4/2 − n1/2 elements less than or equal to the (n/2 − 3n3/4/2)th

element in S.
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Let Xi = 1 if the ith sample of T is less than or equal to

S(n/2 − 3n3/4/2), and 0 otherwise. Then Xi’s are i.i.d with

Pr[Xi = 1] =
1 − 3n−1/4

2
and Pr[Xi = 0] =

1 + 3n−1/4

2
.

Then, for X =
∑n3/4

i=1 Xi,

Pr
[

rS(a) ≤ n − 3n3/4

2

]

≤ Pr
[

X ≥ n3/4/2 − n1/2
]

.

As E[X] = n3/4−3n1/2

2 and

E[X2] − E[X]2 =
n3/4

∑

i,j=1

E[XiXj ] − E[Xi]E[Xj ]

=
n3/4

∑

i

1 − 3n−1/4

2
−

(1 − 3n−1/4

2

)2

≤ n3/4

3
,
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Chebyschev’s Inequality yields

Pr
[

X ≥ n3/4/2 − n1/2
]

≤ n3/4/3

(n1/2/2)2
= O(n−1/4).

�
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4.6 The coupon Collector’s Problem

There are n types of coupons and at each trial a coupon is chosen

uniformly at random.

How many trials are needed to get all coupons?

General example of waiting for combinations of events to happen.

Expected case analysis:

Elementary Analysis: For any 0 ≤ i ≤ n − 1,

Xi = number of trials to get (i + 1)th new

coupon after getting i coupons.

Then, X =
∑n−1

i=0 Xi is the random variable representing the

number of trials needed to get all coupons.

• Distribution of Xi:

Pr[Xi = `] = pi(1 − pi)
`−1,
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where the success probability pi = n−i
n .

That is, Xi is geometrically distributed with parameter p
i
.

In particular,

E[Xi] =
∞
∑

`=1

`pi(1 − pi)
`−1 = 1/pi =

n

n − i
,

and hence

E[X] =
n

∑

i=0

n

n − i
= n

n
∑

i=1

1

i
= nHn = n log n + O(n).

For the variance of X, notice that Xi are independent. thus

σ2(X) =

n
∑

i=1

σ2(Xi).
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As

σ2(Xi) =
∞
∑

`=1

`2pi(1 − pi)
`−1 − 1

p2
i

=
1 − pi

p2
i

=
in

(n − i)2
,

we have

σ2(X) =

n−1
∑

i=0

in

(n − i)2

n
∑

i=1

n(n − i)

i2

= n2
n

∑

i=1

1

i2
− nHn

= (1 + o(1))n2
n

∑

i=1

1

i2
.

Therefore, the Chebyschev inequality gives

X = n lnn + O(n)

with high probability.

95



4.7 The Coupon Collector’s Problem vs.

The Occupancy Problem

Occupancy Problems:

Insert each of m balls to n

distinct bins uniformly at random.

Theorem 2 If m = n lnn + cn, then

Pr[ ∃ empty bin ] → 1 − e−e−c

,

(as n → ∞).

Corollary 3 For the number of trials X for the coupon collector’s

problem and m = n lnn + cn,

Pr[X > m] → 1 − e−e−c

.

96



Poisson Approximation

• Properties of Poisson random variables

Property 1: If X, Y are independent Poi(λ) and Poi(µ),

respectively, then X + Y is a Poi(λ + µ).

Pf. Pr[X + Y = j]

=

k
∑

i=0

Pr[X = i, Y = j − i]

=

j
∑

i=0

e−λ λi

i!
e−µ µj−i

(j − i)!

= e−(λ+µ) (λ + µ)j

j!

j
∑

i=0

j!

i!(j − i)!

( λ

λ + µ

)i( µ

λ + µ

)j−i

= e−(λ+µ) (λ + µ)j

j!

( λ

λ + µ
+

µ

λ + µ

)j

.
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Property 2: The ‘converse’ is also true.
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Property 2: The ‘converse’ is also true.

Let W be a Poi(ρ). We take W balls and color each ball red with

probability p and blue with probability 1 − p, independently of the

others. Let λ = pρ and µ = (1 − p)ρ. Then the numbers X, Y of

red and blue balls, respectively, are independent Poi(λ) and Poi(µ),

respectively.
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Proof. We need to show that

Pr[X = i, Y = j] = e−λ λi

i!
e−µ µi

j!
.

Pr[X = i, Y = j] = Pr[W = i + j]

(

i + j

i

)

pi(1 − p)j

= e−ρ ρi+j

(i + j)!

(

i + j

i

)

pi(1 − p)j

= e−ρ (pρ)i

i!

((1 − p)ρ)j

j!
.

Using ρ = λ + µ and pρ = λ, (1 − p)ρ = µ, we have that

Pr[X = i, Y = j] = e−λ−µ λi

i!

µj

j!
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Generally,

if Xi’s are independent Poi(λi)’s

then
∑

Xi is a Poi(
∑

λi).

Conversely,

Let W be a Poi(ρ).

Take W balls and color each ball i with

probability pi ,
∑

pi = 1, independently of the others. Denote Xi to

be the numbers of balls colored i.

Then Xi’s are independent Poi(λi)’s, where λi = piρ,
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Proof of Theorem 2 Take a Poisson random variable M1 with

mean m
1

= m − n1/2 ln2 n. Notice that

Pr[M1 ≥ m] → 0.

We choose M1 balls and insert each of them to the n bins uniformly

at random. Then, the numbers Yi of balls in the ith bins are i.i.d

Poisson λ
1

:= m
1
/n = lnn + c + o(1) random variables. Thus

Pr[ ∃ empty bin ] ≤ Pr
1
[ ∃ empty bin|M1 ≤ m]

≤ (1 + o(1))(1 − Pr[Yi > 0 ∀ i])

For
Pr[Yi > 0 ∀ i] = Pr[Y1 > 0]n = (1 − e−λ

1 )n,

and

e−λ
1 = e− ln n−c+o(1) =

(1 + o(1))e−c

n
,

we have

(1 − e−λ
1 )n = (1 + o(1))e−e−c

.
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Therefore,

Pr[ ∃ empty bin ] ≤ (1 + o(1))(1 − ee−c

).

Similarly, we may take a Poisson random variable M2 with mean

m
2

= m + n1/2 ln2 n, and choose M2 balls to obtain

Pr[ ∃ empty bin ] ≥ Pr
2
[ ∃ empty bin|M2 ≥ m]

≥ 1 − Pr[Zi > 0 ∀ i] + o(1),

for the numbers Zi of balls in the ith bins, which are i.i.d. Poisson

random variables with mean λ
2

= m
2
/n = lnn + c + o(1).

�
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4.8 Perfect matchings in random uniform

hypergraphs
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