3 Methods of conditional events

3.1 Property B \& Recoloring

Recall that
a hypergraph $H=(V, E)$ has Property B , or 2-colorable, if \exists a 2-coloring of V
s.t. no edge in H is monochromatic.

Have proved: Any k-uniform hypergraph with $|H|<2^{k-1}$ have property B.

Theorem (Beck '78) If a k-uniform hypergraph H has at most

$$
c k^{1 / 3}(\ln k)^{-1 / 2} 2^{k-1}
$$

edges for a constant $c<\sqrt{3}$, then H has property B.

Remark:

Radhakrishnan \& Srinivasan (2000)
If

$$
|H| \leq 0.7\left(\frac{k}{\ln k}\right)^{1 / 2} 2^{k}
$$

then then H has property B .
On the other hand,
\exists non-2-colorable k-uniform hypergraph with $c k^{2} 2^{k}$ edges

Proof. Ex. (Take random $m=c k^{2} 2^{k} k$-subsets of $\left\{1, \ldots, k^{2}\right\}$ and use the first moment method.)

Let

$$
\begin{array}{r}
f(k)=\min \{m: \exists \text { non-2-colorable } k \text {-uniform } \\
\text { hypergraph with } m \text { edges }\} .
\end{array}
$$

Then

$$
0.7\left(\frac{k}{\ln k}\right)^{1 / 2} 2^{k} \leq f(k) \leq c k^{2} 2^{k} .
$$

Proof. Let $p=\ln k /(3 k)$ and $t=c k^{1 / 3}(\ln k)^{-1 / 2}$, where c is a constant $<\sqrt{3}$. Then

$$
2 t e^{-p k}+t^{2} p e^{p k}<1 .
$$

We need to show that if

$$
|H| \leq t 2^{k-1}
$$

then H has property B .

Color each vertex, randomly and independently, either B (blue) or R (red) with equal probability (as before).

Call this "first coloring"
Let W be the set all vertices which belong to at lease one monochromatic edge.

Independently change the color of each $v \in W$ with probability p
Call this "recoloring"

An edge e after recoloring is monochromatic by two reasons:

1. Event $A_{e}: e$ is monochromatic in both the first coloring and the recoloring

$$
\begin{aligned}
\operatorname{Pr}\left[A_{e}\right]= & \operatorname{Pr}[e \text { monoch. in first col. }] \\
& \cdot(\operatorname{Pr}[\text { no color in } e \text { is changed (in the recol.) }] \\
& \quad+\operatorname{Pr}[\text { all colors in } e \text { is changed (in the recol.) }]) \\
= & 2^{1-k}\left((1-p)^{k}+p^{k}\right) \\
\leq & 2^{1-k}\left(2(1-p)^{k}\right) \leq 2^{2-k} e^{-p k}
\end{aligned}
$$

and

$$
\operatorname{Pr}[\exists \operatorname{such} e] \leq|H| 2^{2-k} e^{-p k} \leq 2 t e^{-p k}
$$

2. Event $B_{e}: \exists \emptyset \neq U_{0} \subseteq e$ s.t. in the first col, $e \backslash U_{0}$ was red and U_{0} was blue, and
in the recol. all col. in $e \backslash U_{0}$ remains the same and all col. in U_{0} are changed,
or the same with red/blue reversed.
Notice that this case also requires at least one edge, say f, with

$$
f \cap e \neq \emptyset, f \cap e \subseteq U_{0} \text {, and } f \text { is blue monoch. }
$$

Let $U=U_{0} \backslash f$. Then the case implies that $\exists f, U$ (possibly \emptyset) with $e \cap f \neq \emptyset$ and $U \subseteq e \backslash f$ s.t. the event $B_{e f U}$ that, in the first col., $e \backslash(U \cup f)$ was red, $U \cup f$ was blue and
in the recol., all col. in $e \backslash(U \cup f)$ remains the same and all col. in $U \cup(e \cap f)$ are changed,
or the same with red/blue reversed, occurs.

Since

$$
\operatorname{Pr}\left[B_{e f U}\right] \leq 2^{1-2 k+|e \cap f|} p^{|e \cap f|+|U|}
$$

we have

$$
\operatorname{Pr}\left[\cup_{e f U} B_{e f U}\right] \leq \sum_{e} \sum_{f: e \cap f \neq \emptyset} \sum_{U: U \subseteq e \backslash f} \operatorname{Pr}\left[B_{e f U}\right]
$$

It follows that

$$
\begin{aligned}
\sum_{U: U \subseteq e \backslash f} \operatorname{Pr}\left[B_{e f U}\right] & \leq \sum_{u=0}^{k-|e \cap f|}\binom{k-|e \cap f|}{u} \cdot 2^{1-2 k+|e \cap f|} p^{|e \cap f|+u} \\
& =2^{1-2 k+|e \cap f|} p^{|e \cap f|}(1+p)^{k-|e \cap f|} \\
& \leq 2^{1-2 k} e^{p k}\left(\frac{2 p}{1+p}\right)^{|e \cap f|}
\end{aligned}
$$

Thus

$$
\sum_{U: U \subseteq e \backslash f} \operatorname{Pr}\left[B_{e f U}\right] \leq 2^{1-2 k} e^{p k}\left(\frac{2 p}{1+p}\right)^{|e \cap f|} \leq 2^{2-2 k} e^{p k} p
$$

yields

$$
\begin{aligned}
\operatorname{Pr}\left[\cup_{e} B_{e}\right] \leq \operatorname{Pr}\left[\cup_{e f U} B_{e f U}\right] & \leq \sum_{e} \sum_{f: e \cap f \neq \emptyset} 2^{2-2 k} p e^{p k} \\
& \leq|H|^{2} 2^{2-2 k} p e^{p k} \\
& \leq t^{2} p e^{p k}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\operatorname{Pr}\left[\cup_{e} A_{e} \cup \cup_{e, f, U} B_{e f u}\right] & \leq \operatorname{Pr}\left[\cup_{e} A_{e}\right]+\operatorname{Pr}\left[\cup_{e, f, U} B_{e f u}\right] \\
& \leq 2 t e^{-p k}+t^{2} p e^{p k}<1
\end{aligned}
$$

3.2 Independence numbers of sparse graphs

Theorem (Ajtai, Komlós and Szemerédi ('81))
For a triangle-free graph G,

$$
E[|I|] \geq \frac{c n \log t}{t}
$$

($t=t(G)$: the average degree).

Ex. This implies that

$$
R(3, t) \leq \frac{c^{\prime} t^{2}}{\log t}
$$

For a graph G, let \mathcal{I} denote the set of all independent sets of G. Take an independent set I in \mathcal{I} uniformly at random so that

$$
\operatorname{Pr}[I=J]=\frac{1}{|\mathcal{I}|} \quad \forall J \in \mathcal{I} .
$$

I : (uniformly) random independent set
Theorem (Shearer) For a K_{r}-free graph G,

$$
E[|I|] \geq \frac{c_{r} n \log t}{t \log \log t} .
$$

Proof of AKS Theorem. (Alon's version of Shearer's proof) Assume $\operatorname{maxdeg}(G) \leq 2 t$ (WHY?). For $v \in V(G)$, let

$$
X_{v}= \begin{cases}t & \text { if } v \in I \\ |N(v) \cap I| & \text { otherwise },\end{cases}
$$

or equivalently,

$$
X_{v}:=t 1(v \in I)+\sum_{w \sim v} 1(w \in I) .
$$

Note that

$$
\begin{aligned}
\sum_{v \in V(G)} X_{v} & =t|I|+\sum_{v \in V(G)} \sum_{w \sim v} 1(w \in I) \\
& \leq t|I|+2 t|I|=3 t|I|
\end{aligned}
$$

Enough to show that

$$
E\left[X_{v}\right] \geq c \log t
$$

for this implies

$$
3 t E[|I|] \geq E\left[\sum_{v} X_{v}\right] \geq c n \log t .
$$

Let $J=I \backslash(\{v\} \cup N(v))$, we will show that

$$
E\left[X_{v} \mid J\right] \geq c \log t
$$

Let r be the number of vertices in $N(v)$ to which no vertex in J is adjacent.

If $2^{r} \leq t / \log t-1$, then

$$
\frac{t}{1+2^{r}} \geq \log t
$$

If $2^{r} \geq t / \log t-1$, then

$$
\frac{(r / 2) 2^{r}}{1+2^{r}} \sim r / 2 \geq c \log t-\log \log t
$$

3.3 Covering hypercube

Recall
n-cube Q_{n} :

$$
\{-1,1\}^{n}=\left\{\left(x_{i}\right): x_{i}=1 \text { or }-1, i=1, \ldots, n\right\}
$$

Let X_{1}, \ldots, X_{m} be (mutually) independent uniform random vectors in Q_{n}, in particular,

$$
\operatorname{Pr}\left[X_{j}=u\right]=2^{-n} \text { for any } u \in Q_{n} .
$$

Theorem If $m=(1+\varepsilon) n$ for $\varepsilon>0$, then

$$
\operatorname{Pr}\left[\exists w \in Q_{n} \text { with } w \cdot X_{j}>0 \quad \forall j=1, \ldots, m\right] \leq 2^{-\varepsilon n} \longrightarrow 0,
$$

as $n \rightarrow \infty$.

- Motivation: Neural Networks

Consider voice recognition (of the brain)

How the brain recognizes

Voice 1, Voice 2, ..., Voice m.

WANT to store)
Voice 1, Voice 2, ..., Voice m so that

Voice $1=X^{(1)}$, Voice $2=X^{(2)}, \ldots \ldots \ldots$.

$$
\begin{gathered}
X^{(1)}=(1,-1, \ldots, 1) \\
X^{(2)}=(-1,-1, \ldots,-1)
\end{gathered}
$$

To store $=$ To find a weight matrix J (between neurons) which satisfies certain properties

The weight matrix $J=\left(J_{i j}\right)$ is a (matrix-valued) function of $X^{(1)}, X^{(2)}, \ldots, X^{(m)}$.
(We always assume $J_{i i}=0$.)

A1. Neural network models, or simply neural networks, are interconnected systems of neurons with binary activity. That is,

$$
X^{(i)} \in Q_{n}=\{-1,1\}^{n} .
$$

A2. A neural network evolves using certain weights, called synaptic weights (or learning rules), between neurons.

A3. Interconnections among the neurons collectively encode information. That is, $J=J\left(X^{(1)}, \ldots, X^{(m)}\right)$.

HOW to find the closest $X^{(i)}$???

1. Compute all the Hamming distances

$$
d_{H}\left(Y, X^{(1)}\right), d_{H}\left(Y, X^{(2)}\right), \ldots, d_{H}\left(Y, X^{(m)}\right)
$$

2. Evolution

$$
\begin{aligned}
Y(0) & :=Y \\
Y(t+1) & :=F_{J}(Y(t)) \text { for } t=1,2, \ldots
\end{aligned}
$$

O.K. if $Y(t)$ converges to $X^{(i)}$ for some i.

Suppose the weight matrix J is given.

Define $F_{J}=\left(f_{1}, \ldots, f_{n}\right): Q_{n} \longrightarrow Q_{n}$ s.t.

$$
f_{i}(Y):=\operatorname{sgn}\left(\sum_{j=1}^{n} J_{i j} Y_{j}\right)
$$

where

$$
\operatorname{sgn}(z):= \begin{cases}1 & \text { if } z \geq 0 \\ -1 & \text { if } z<0\end{cases}
$$

HOW to find the closest $X^{(i)}$?

1. Compute all the Hamming distances

$$
d_{H}\left(Y, X^{(1)}\right), d_{H}\left(Y, X^{(2)}\right), \ldots, d_{H}\left(Y, X^{(m)}\right) .
$$

2. Evolution

$$
\begin{aligned}
Y(0) & :=Y \\
Y(t+1) & :=F_{J}(Y(t)) \text { for } t=1,2, \ldots
\end{aligned}
$$

O.K. if $Y(t)$ converges to $X^{(i)}$ for some i.

- Evolution

$$
\begin{aligned}
Y(0) & :=Y \\
Y(t+1) & :=F_{J}(Y(t)) \text { for } t=1,2, \ldots
\end{aligned}
$$

O.K. if $Y(t)$ converges to $X^{(i)}$ for some i.

That is,

$$
Y(t)=Y(t+1)=X^{(i)}
$$

for some t.

Necessary and Sufficient Conditions:
Fixed Point Property:
All $X^{(i)}$ have to be fixed points of F_{J}, that is,

$$
F_{J}\left(X^{(i)}\right)=X^{(i)} .
$$

Attracting Property:
All $X^{(i)}$ have to be attractive.

In ideal cases,
we need only $O(\log \log n)$ evolutions.

Note that

$$
n \sim 10^{11}
$$

So

$$
\log \log n \sim 3.23
$$

For Fixed Point Property
WANT a weight matrix J such that

$$
F_{J}\left(X^{(r)}\right)=X^{(r)} \quad \text { for all } r=1, \ldots, m
$$

That is, for all $r=1, \ldots, m, i=1, \ldots, n$,

$$
X_{i}^{(r)}=\operatorname{sgn}\left(\sum_{j=1}^{n} J_{i j} X_{j}^{(r)}\right),
$$

or equivalently,

$$
\begin{equation*}
\sum_{j=1}^{n} J_{i j} X_{j}^{(r)} X_{i}^{(r)} \geq 0 \quad \text { for all } r=1, \ldots, m \tag{1}
\end{equation*}
$$

($\left.J_{i i}=0.\right)$

Let $i=1$ and $X_{1}^{(r)}=1$. Then (1) becomes

$$
\sum_{j=2}^{n} J_{1 j} X_{j}^{(r)} \geq 0 \quad \text { for all } r=1, \ldots, m
$$

Problem:
Is there $w \in Q_{n}$ with $w \cdot X_{j}>0 \forall j=1, \ldots, m$?
Let

$$
P_{b, b}(n, m)=\operatorname{Pr}\left[\exists w \in Q_{n} \text { with } w \cdot X_{j}>0 \quad \forall j=1, \ldots, m,\right.
$$

for i.i.d uniform random vector X_{1}, \ldots, X_{m} in Q_{n}. One may similarly define

$$
P_{s, s}(n, m)=\operatorname{Pr}\left[\exists w \in S_{n-1} \text { with } w \cdot X_{j}>0 \quad \forall j=1, \ldots, m,\right.
$$

for i.i.d uniform random vector X_{1}, \ldots, X_{m} in S_{n-1}, and $P_{b, s}, P_{s, b}$.

Wendel ('62)

$$
\mathrm{P}_{s, s}(n, k)=2^{-k+1} \sum_{i=0}^{n-1}\binom{k-1}{i} .
$$

Füredi('86)

$$
\mathrm{P}_{b, s}(n, k)=2^{-k+1} \sum_{i=0}^{n-1}\binom{k-1}{i}+O\left(n^{-1 / 2}\right) .
$$

Kahn, Komlós and Szemerédi('93)

$$
\begin{aligned}
& \mathrm{P}_{b, s}(n, k)=\quad 2^{-k+1} \sum_{i=0}^{n-1}\binom{k-1}{i} \\
&+o\left((0.99910)^{n} n^{2}\right)
\end{aligned}
$$

Tao \& Vu (2005)

$$
\begin{array}{r}
\mathrm{P}_{b, s}(n, k)=2^{-k+1} \sum_{i=0}^{n-1}\binom{k-1}{i} \\
+o\left((3 / 4)^{n} n^{2}\right)
\end{array}
$$

In particular,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P_{b, s}(n,(2-\varepsilon) n) & =1 \\
\lim _{n \rightarrow \infty} P_{s, s}(n,(2+\varepsilon) n) & =0
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P_{s, s}(n,(2-\varepsilon) n) & =1 \\
\lim _{n \rightarrow \infty} P_{b, s}(n,(2+\varepsilon) n) & =0
\end{aligned}
$$

(K \& Roche '98) For $\varepsilon=0.0037$,

$$
\lim _{n \rightarrow \infty} P_{b, b}(n,(1-\varepsilon) n)=0,
$$

and, for $\rho=0.005$,

$$
\lim _{n \rightarrow \infty} P_{b, b}(n, \rho n)=1 .
$$

For the proof of

$$
\lim _{n \rightarrow \infty} P_{b, b}(n,(1-\varepsilon) n)=0
$$

let $W \in Q_{n}$ be fixed and assume

$$
W \cdot X^{(i)}=\sum_{j=1}^{n} W_{j} X_{i j} \geq 0, \quad \forall i=1, \ldots, k
$$

where $X_{i j}=X_{j}^{(i)}$. Then, for

$$
U_{j}:=\sum_{i=1}^{k} X_{i j} \quad \text { and } \quad U:=\left(U_{j}\right)
$$

we have

$$
\begin{aligned}
\sum_{i=1}^{k}\left|\sum_{j=1}^{n} W_{j} X_{i j}\right| & =\sum_{i=1}^{k} \sum_{j=1}^{n} W_{j} X_{i j} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{k} W_{j} X_{i j} \\
& =\sum_{j=1}^{n} W_{j} \sum_{i=1}^{k} X_{i j} \\
& =\sum_{j=1}^{n} W_{j} U_{j} \\
& =W \cdot U
\end{aligned}
$$

On the other hand, if ε is small enough,
then

$$
\sum_{i=1}^{k}\left|\sum_{j=1}^{n} W_{j} X_{i j}\right| \approx \sum_{j}\left|U_{j}\right|
$$

Together with

$$
\sum_{i=1}^{k}\left|\sum_{j=1}^{n} W_{j} X_{i j}\right|=\sum_{j=1}^{n} W_{j} U_{j}
$$

this gives

$$
W \approx\left(\operatorname{sgn}\left(U_{j}\right)\right)=: \operatorname{sgn} U
$$

Thus

$$
\begin{aligned}
P_{b, b}(n,(1-\varepsilon) n) \lesssim & \sum_{\substack{w \in Q_{n} \\
w}} \operatorname{Pr}\left[w \cdot X_{j} \quad \forall j=1, \ldots,(1-\varepsilon) n\right] \\
& \operatorname{sgn} U
\end{aligned}
$$

$$
\begin{aligned}
& P_{b, b}(n,(1-\varepsilon) n) \\
& \lesssim \sum_{u \in \mathcal{U}} \operatorname{Pr}[U=u] \sum_{\substack{w \in Q_{n} \\
w \approx \operatorname{sgn} u}} \operatorname{Pr}\left(w \cdot X_{j} \quad \forall j=1, \ldots,(1-\varepsilon) n \mid U=u\right)
\end{aligned}
$$

Open problems:

Conjecture. There $c>0$ such that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} P_{b, b}(n,(c-\delta) n)=1 \\
\lim _{n \rightarrow \infty} P_{b, b}(n,(c+\delta) n)=0 . \\
c=? ? ? \text { if exists }
\end{gathered}
$$

Krauth and Opper ('89)
A simulation up to $n \leq 25$ predicts $c \approx .82$.

Krauth and Mézard ('89)
The replica method with so-called symmetry breaking, which is not rigorous, gives $c \approx .83$.

4 Second Moment Method

4.1 Two examples

Let X be a nonnegative integral valued RV.

$$
\operatorname{Pr}[X=0]=? ? ?
$$

E.g.

$$
X=\# \text { of 2-colorings satisfying certain properties }
$$

If $E[X] \rightarrow 0$, then

$$
0 \leq \operatorname{Pr}[X>0] \leq E[X] \rightarrow 0
$$

yields

$$
\operatorname{Pr}[X=0] \rightarrow 1
$$

If

$$
E[X]=100 \quad ? ? ? ?
$$

For

$$
\operatorname{Pr}[X=99]=\operatorname{Pr}[X=101]=1 / 2
$$

we have

$$
\operatorname{Pr}[X=0]=0
$$

IF

$$
\operatorname{Pr}[Y=0]=0.999, \operatorname{Pr}\left[Y=10^{6}\right]=10^{-4}
$$

then

$$
\operatorname{Pr}[Y=0]=0.999
$$

Notice that $E[X]=E[Y]=100$ but

$$
\sigma^{2}(X)=1, \quad \sigma^{2}(Y)=10^{12} \cdot 10^{-4}-(100)^{2}=10^{8}-10^{4} \approx 10^{8}
$$

4.2 Chebyschev's Inequality:

For any positive λ and any $\operatorname{RV} X$,

$$
\operatorname{Pr}[|X-\mu| \geq \lambda \sigma] \leq \frac{1}{\lambda^{2}}
$$

Proof. Note that

$$
\operatorname{Pr}[|X-\mu| \geq \lambda \sigma]=\operatorname{Pr}\left[|X-\mu|^{2} \geq \lambda^{2} \sigma^{2}\right]
$$

Markov Ineq. implies that

$$
\operatorname{Pr}\left[|X-\mu|^{2} \geq \lambda^{2} \sigma^{2}\right] \leq \frac{E\left[|X-\mu|^{2}\right]}{\lambda^{2} \sigma^{2}}=\frac{1}{\lambda^{2}} .
$$

Corollary For a nonnegative integral valued RV X,

$$
\operatorname{Pr}[X=0] \leq \frac{\sigma^{2}(X)}{E[X]^{2}} .
$$

Proof. Taking $\lambda=\mu / \sigma$,

$$
\operatorname{Pr}[X=0] \leq \operatorname{Pr}[|X-\mu| \geq \lambda \sigma] \leq 1 / \lambda^{2}=\sigma^{2} / \mu^{2} .
$$

Corollary If

$$
\sigma^{2}(X) \ll E[X]^{2}, \text { or equivalently } \frac{\sigma^{2}(X)}{E[X]^{2}} \rightarrow 0
$$

then

$$
\operatorname{Pr}[X>0] \rightarrow 1
$$

4.3 Arithmetic Progression

Let $A=A(n, p)$ be a random subset of $\{1, \ldots, n\}$ such that each $i \in\{1, \ldots, n\}$ independently belongs to A with probability p, that is,

$$
\operatorname{Pr}[i \in A]=p
$$

Theorem For fixed positive integer $k \geq 2$,
$\operatorname{Pr}[A$ contains a k-term AP $] \rightarrow \begin{cases}0 & \text { if } p \ll n^{-2 / k} \\ 1 & \text { if } p \gg n^{-2 / k}\end{cases}$

The property that A contains a k-term AP has a threshold function $n^{-2 / k}$.

Proof. Let $\phi(n, k)$ be the number of k-term AP's in $\{1, \ldots, n\}$. Then

$$
\phi(n, k)=\Theta\left(n^{2}\right) .
$$

For the set $\left\{S_{1}, \ldots, S_{\phi(n, k)}\right\}$ of k-term AP's with a certain order, we define

$$
X_{i}= \begin{cases}1 & \text { if all ele. of } S_{i} \text { are in } A \\ 0 & \text { otherwise }\end{cases}
$$

and the number of k-term AP's in A

$$
X=\sum_{i} X_{i} .
$$

Then

$$
E[X]=\sum_{i} E\left[X_{i}\right]=\phi(n, k) p^{k}=\Theta\left(n^{2} p^{k}\right) .
$$

If $p \ll n^{-2 / k}$,

$$
\operatorname{Pr}[A \text { contains a } k \text {-term AP }]=\operatorname{Pr}[X>0] \leq E[X] \longrightarrow 0 .
$$

If $p \gg n^{-2 / k}$,

$$
E[X] \longrightarrow \infty,
$$

NEED variance: It is enough to show that

$$
\sigma^{2}(X) \ll E[X]^{2}, \text { or } \frac{\sigma^{2}(X)}{E[X]^{2}} \longrightarrow 0 .
$$

Notice that

$$
\begin{aligned}
E\left[X^{2}\right]-E[X]^{2} & =E\left[\sum_{i, j} X_{i} X_{j}\right]-\sum_{i, j} E\left[X_{i}\right] E\left[X_{j}\right] \\
& =\sum_{i, j} E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right] .
\end{aligned}
$$

If $S_{i} \cap S_{j}=\emptyset$, then

$$
\operatorname{cov}\left(X_{i}, X_{j}\right):=E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]=p^{2 k}-p^{k} p^{k}=0 .
$$

If $\left|S_{i} \cap S_{j}\right|=1$, then

$$
\operatorname{cov}\left(X_{i}, X_{j}\right)=E\left[X_{i} X_{j}\right]-E\left[X_{i}\right]\left[X_{j}\right] \leq p^{2 k-1} .
$$

If $\left|S_{i} \cap S_{j}\right|>1$, then we use a trivial bound

$$
\operatorname{cov}\left(X_{i}, X_{j}\right)=E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right] \leq E\left[X_{i}\right]=p^{k} .
$$

Using

$$
\begin{aligned}
& \sum_{i, j} \operatorname{cov}\left(X_{i}, X_{j}\right)=\sum_{i}\left(\sum_{j: S_{i} \cap S_{j}=\emptyset} \operatorname{cov}\left(X_{i}, X_{j}\right)\right. \\
& \left.\quad+\sum_{j:\left|S_{i} \cap S_{j}\right|=1} \operatorname{cov}\left(X_{i}, X_{j}\right)+\sum_{j:\left|S_{i} \cap S_{j}\right|>1} \operatorname{cov}\left(X_{i}, X_{j}\right)\right),
\end{aligned}
$$

and, for fixed i,

$$
\begin{aligned}
& \left|\left\{j:\left|S_{i} \cap S_{j}\right|=1\right\}\right|=O(n), \\
& \left|\left\{j:\left|S_{i} \cap S_{j}\right|>1\right\}\right|=O(1),
\end{aligned}
$$

we have

$$
\sum_{i, j} \operatorname{cov}\left(X_{i}, X_{j}\right)=O\left(n^{3} p^{2 k-1}+n^{2} p^{k}\right)
$$

Thus,

$$
\sigma^{2}(X)=O\left(n^{2} p^{k}+n^{3} p^{2 k-1}\right)
$$

and $p \gg n^{-2 / k}$ yields

$$
\frac{\sigma^{2}(X)}{E[X]^{2}}=O\left(\frac{1}{n^{2} p^{k}}+\frac{1}{n p}\right)=o(1)
$$

4.4 Random graph $G(n, p)$

Each of $\binom{n}{2}$ edges is independently in $G(n, p)$ with pr. p.
For a fixed graph G with m edges,

$$
\operatorname{Pr}[G(n, p)=G]=p^{m}(1-p)^{\binom{n}{2}-m} .
$$

Theorem For $G=G(n, p)$,

$$
\operatorname{Pr}[\omega(G) \geq 4] \rightarrow \begin{cases}0 & \text { if } p \ll n^{-2 / 3} \\ 1 & \text { if } p \gg n^{-2 / 3}\end{cases}
$$

(The property $w(G) \geq 4$ has a threshold function $n^{-2 / 3}$.)

Proof. Ex.

4.5 Randomized Selection

S : a set of n distinct elements Select the k th smallest element in S.

Note that there are sorting Algorithms with running time $O(n \log n)$.

Notation: For $t \in S$,

$$
\begin{aligned}
r_{S}(t) & =\text { the rank of } t \\
S(i) & =\text { the element } t \in S \text { with } r_{S}(t)=i
\end{aligned}
$$

LazySelect Algorithm:
Input: A set of n distinct elements.
Output: The k th smallest element in $S, S(k)$.

Algorithm for $k=n / 2$:

1. Choose $n^{3 / 4}$ elements from S uniformly at random with replacement. Denoted by T is the (multi)set of the elements.
2. Sort T in $O\left(n^{3 / 4} \log n\right)$ steps using any optimal sorting algorithms.
3. Let $x=k n^{-1 / 4}=n^{3 / 4} / 2$. For $\ell=\lfloor x-\sqrt{n}\rfloor$ and $h=\lceil x+\sqrt{n}\rceil$, choose $a=T(\ell)$ and $b=T(h)$.
By comparing a and b with all elements of S, determine $r_{S}(a)$ and $r_{S}(b)$.
4. If

$$
\begin{equation*}
\frac{1 n-3 n^{3 / 4}}{2} \leq r_{S}(a) \leq n / 2 \leq r_{S}(b) \leq \frac{n+3 n^{3 / 4}}{2} \tag{2}
\end{equation*}
$$

then set $P=\{y \in S \mid a \leq y \leq b\}$ and sort P in $O(|P| \log |P|)$ steps to identify $P\left(n / 2-r_{S}(a)+1\right)$, which is $S(n / 2)$.
If not, repeat Steps 1-3 until (2) holds.

Theorem With probability $1-O\left(n^{-1 / 4}\right)$, the LazySelect finds $S(n / 2)$ on the first pass through step 1-5. Thus, it performs only $(2+o(1)) n$ comparisons.

Proof. (Probability of failure) .
It is enough to show that

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|r_{S}(a)-\left(n / 2-n^{3 / 4}\right)\right| \geq n^{3 / 4} / 2\right]=O\left(n^{-1 / 4}\right) \\
& \operatorname{Pr}\left[\left|r_{S}(b)-\left(n / 2+n^{3 / 4}\right)\right| \geq n^{3 / 4} / 2\right]=O\left(n^{-1 / 4}\right)
\end{aligned}
$$

and
(WHY?). We prove only

$$
\operatorname{Pr}\left[r_{S}(a) \leq \frac{n-3 n^{3 / 4}}{2}\right]=O\left(n^{-1 / 4}\right)
$$

Other inequalities may be obtained by similar arguments.
Clearly, $r_{S}(a) \leq n / 2-3 n^{3 / 4} / 2$ implies that T contains at least $n^{3 / 4} / 2-n^{1 / 2}$ elements less than or equal to the $\left(n / 2-3 n^{3 / 4} / 2\right)^{\text {th }}$ element in S.

Let $X_{i}=1$ if the $i^{\text {th }}$ sample of T is less than or equal to $S\left(n / 2-3 n^{3 / 4} / 2\right)$, and 0 otherwise. Then X_{i} 's are i.i.d with

$$
\operatorname{Pr}\left[X_{i}=1\right]=\frac{1-3 n^{-1 / 4}}{2} \text { and } \operatorname{Pr}\left[X_{i}=0\right]=\frac{1+3 n^{-1 / 4}}{2}
$$

Then, for $X=\sum_{i=1}^{n^{3 / 4}} X_{i}$,

$$
\operatorname{Pr}\left[r_{S}(a) \leq \frac{n-3 n^{3 / 4}}{2}\right] \leq \operatorname{Pr}\left[X \geq n^{3 / 4} / 2-n^{1 / 2}\right]
$$

As $E[X]=\frac{n^{3 / 4}-3 n^{1 / 2}}{2}$ and

$$
\begin{aligned}
E\left[X^{2}\right]-E[X]^{2} & =\sum_{i, j=1}^{n^{3 / 4}} E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right] \\
& =\sum_{i}^{n^{3 / 4}} \frac{1-3 n^{-1 / 4}}{2}-\left(\frac{1-3 n^{-1 / 4}}{2}\right)^{2} \leq \frac{n^{3 / 4}}{3}
\end{aligned}
$$

Chebyschev's Inequality yields

$$
\operatorname{Pr}\left[X \geq n^{3 / 4} / 2-n^{1 / 2}\right] \leq \frac{n^{3 / 4} / 3}{\left(n^{1 / 2} / 2\right)^{2}}=O\left(n^{-1 / 4}\right)
$$

4.6 The coupon Collector's Problem

There are n types of coupons and at each trial a coupon is chosen uniformly at random.

How many trials are needed to get all coupons?
General example of waiting for combinations of events to happen. Expected case analysis:

Elementary Analysis: For any $0 \leq i \leq n-1$,

$$
\begin{aligned}
X_{i}= & \text { number of trials to get }(i+1)^{\text {th }} \text { new } \\
& \text { coupon after getting } i \text { coupons. }
\end{aligned}
$$

Then, $X=\sum_{i=0}^{n-1} X_{i}$ is the random variable representing the number of trials needed to get all coupons.

- Distribution of X_{i} :

$$
\operatorname{Pr}\left[X_{i}=\ell\right]=p_{i}\left(1-p_{i}\right)^{\ell-1}
$$

where the success probability $p_{i}=\frac{n-i}{n}$.
That is, X_{i} is geometrically distributed with parameter p_{i}.
In particular,

$$
E\left[X_{i}\right]=\sum_{\ell=1}^{\infty} \ell p_{i}\left(1-p_{i}\right)^{\ell-1}=1 / p_{i}=\frac{n}{n-i}
$$

and hence

$$
E[X]=\sum_{i=0}^{n} \frac{n}{n-i}=n \sum_{i=1}^{n} \frac{1}{i}=n H_{n}=n \log n+O(n)
$$

For the variance of X, notice that X_{i} are independent. thus

$$
\sigma^{2}(X)=\sum_{i=1}^{n} \sigma^{2}\left(X_{i}\right)
$$

As

$$
\sigma^{2}\left(X_{i}\right)=\sum_{\ell=1}^{\infty} \ell^{2} p_{i}\left(1-p_{i}\right)^{\ell-1}-\frac{1}{p_{i}^{2}}=\frac{1-p_{i}}{p_{i}^{2}}=\frac{i n}{(n-i)^{2}}
$$

we have

$$
\begin{aligned}
\sigma^{2}(X) & =\sum_{i=0}^{n-1} \frac{i n}{(n-i)^{2}} \sum_{i=1}^{n} \frac{n(n-i)}{i^{2}} \\
& =n^{2} \sum_{i=1}^{n} \frac{1}{i^{2}}-n H_{n} \\
& =(1+o(1)) n^{2} \sum_{i=1}^{n} \frac{1}{i^{2}}
\end{aligned}
$$

Therefore, the Chebyschev inequality gives

$$
X=n \ln n+O(n)
$$

with high probability.

4.7 The Coupon Collector's Problem vs.

 The Occupancy ProblemOccupancy Problems:

> Insert each of m balls to n distinct bins uniformly at random.

Theorem 2 If $m=n \ln n+c n$, then

$$
\operatorname{Pr}[\exists e m p t y \text { bin }] \rightarrow 1-e^{-e^{-c}}
$$

(as $n \rightarrow \infty$).
Corollary 3 For the number of trials X for the coupon collector's problem and $m=n \ln n+c n$,

$$
\operatorname{Pr}[X>m] \rightarrow 1-e^{-e^{-c}}
$$

Poisson Approximation

- Properties of Poisson random variables

Property 1: If X, Y are independent $\operatorname{Poi}(\lambda)$ and $\operatorname{Poi}(\mu)$, respectively, then $X+Y$ is a $\operatorname{Poi}(\lambda+\mu)$.
Pf.

$$
\begin{aligned}
& \operatorname{Pr}[X+Y=j] \\
& =\sum_{i=0}^{k} \operatorname{Pr}[X=i, Y=j-i] \\
& =\sum_{i=0}^{j} e^{-\lambda} \frac{\lambda^{i}}{i!} e^{-\mu} \frac{\mu^{j-i}}{(j-i)!} \\
& =e^{-(\lambda+\mu)} \frac{(\lambda+\mu)^{j}}{j!} \sum_{i=0}^{j} \frac{j!}{i!(j-i)!}\left(\frac{\lambda}{\lambda+\mu}\right)^{i}\left(\frac{\mu}{\lambda+\mu}\right)^{j-i} \\
& =e^{-(\lambda+\mu)} \frac{(\lambda+\mu)^{j}}{j!}\left(\frac{\lambda}{\lambda+\mu}+\frac{\mu}{\lambda+\mu}\right)^{j} .
\end{aligned}
$$

Property 2: The 'converse' is also true.

Property 2: The 'converse' is also true.

Let W be a $\operatorname{Poi}(\rho)$. We take W balls and color each ball red with probability p and blue with probability $1-p$, independently of the others. Let $\lambda=p \rho$ and $\mu=(1-p) \rho$. Then the numbers X, Y of red and blue balls, respectively, are independent $\operatorname{Poi}(\lambda)$ and $\operatorname{Poi}(\mu)$, respectively.

Proof. We need to show that

$$
\begin{aligned}
\operatorname{Pr}[X= & i, Y=j]=e^{-\lambda} \frac{\lambda^{i}}{i!} e^{-\mu} \frac{\mu^{i}}{j!} \\
\operatorname{Pr}[X=i, Y=j] & =\operatorname{Pr}[W=i+j]\binom{i+j}{i} p^{i}(1-p)^{j} \\
& =e^{-\rho} \frac{\rho^{i+j}}{(i+j)!}\binom{i+j}{i} p^{i}(1-p)^{j} \\
& =e^{-\rho} \frac{(p \rho)^{i}}{i!} \frac{((1-p) \rho)^{j}}{j!}
\end{aligned}
$$

Using $\rho=\lambda+\mu$ and $p \rho=\lambda,(1-p) \rho=\mu$, we have that

$$
\operatorname{Pr}[X=i, Y=j]=e^{-\lambda-\mu} \frac{\lambda^{i}}{i!} \frac{\mu^{j}}{j!}
$$

Generally,

$$
\begin{aligned}
& \text { if } X_{i} \text { 's are independent } \operatorname{Poi}\left(\lambda_{i}\right) \text { 's } \\
& \text { then } \sum X_{i} \text { is a } \operatorname{Poi}\left(\sum \lambda_{i}\right) .
\end{aligned}
$$

Conversely,

$$
\text { Let } W \text { be a } \operatorname{Poi}(\rho) \text {. }
$$

Take W balls and color each ball i with
probability $p_{i}, \sum p_{i}=1$, independently of the others. Denote X_{i} to be the numbers of balls colored i.
Then X_{i} 's are independent $\operatorname{Poi}\left(\lambda_{i}\right)$'s, where $\lambda_{i}=p_{i} \rho$,

Proof of Theorem 2 Take a Poisson random variable M_{1} with mean $m_{1}=m-n^{1 / 2} \ln ^{2} n$. Notice that

$$
\operatorname{Pr}\left[M_{1} \geq m\right] \rightarrow 0 .
$$

We choose M_{1} balls and insert each of them to the n bins uniformly at random. Then, the numbers Y_{i} of balls in the $i^{\text {th }}$ bins are i.i.d Poisson $\lambda_{1}:=m_{1} / n=\ln n+c+o(1)$ random variables. Thus

$$
\begin{aligned}
\operatorname{Pr}[\exists \text { empty bin }] & \leq \operatorname{Pr}_{1}\left[\exists \text { empty bin } \mid M_{1} \leq m\right] \\
& \leq(1+o(1))\left(1-\operatorname{Pr}\left[Y_{i}>0 \forall i\right]\right)
\end{aligned}
$$

For

$$
\operatorname{Pr}\left[Y_{i}>0 \quad \forall i\right]=\operatorname{Pr}\left[Y_{1}>0\right]^{n}=\left(1-e^{-\lambda_{1}}\right)^{n},
$$

and

$$
e^{-\lambda_{1}}=e^{-\ln n-c+o(1)}=\frac{(1+o(1)) e^{-c}}{n}
$$

we have

$$
\left(1-e^{-\lambda_{1}}\right)^{n}=(1+o(1)) e^{-e^{-c}} .
$$

Therefore,

$$
\operatorname{Pr}[\exists \text { empty bin }] \leq(1+o(1))\left(1-e^{e^{-c}}\right) .
$$

Similarly, we may take a Poisson random variable M_{2} with mean $m_{2}=m+n^{1 / 2} \ln ^{2} n$, and choose M_{2} balls to obtain

$$
\begin{aligned}
\operatorname{Pr}[\exists \text { empty bin }] & \geq \operatorname{Pr}_{2}\left[\exists \text { empty bin } \mid M_{2} \geq m\right] \\
& \geq 1-\operatorname{Pr}\left[Z_{i}>0 \quad \forall i\right]+o(1),
\end{aligned}
$$

for the numbers Z_{i} of balls in the $i^{\text {th }}$ bins, which are i.i.d. Poisson random variables with mean $\lambda_{2}=m_{2} / n=\ln n+c+o(1)$.
4.8 Perfect matchings in random uniform hypergraphs

List of Papers

Z. Furedi, Random Polytopes in the d-Dimensional Cube, Discrete Comput. Geom. 1: 315-319 (1986).
J. Kim and J. Roche, Covering Cubes by Random Half Cubes with Applications to Binary Neural Networks, J. Comput. Syst. Sci. 56(2): 223-252 (1998).

Radhakrishnan \& Srinivasan, Improved Bounds and Algorithms for Hypergraph 2-coloring, Random Structures \& Algorithms 16, 4-32, (2000).

