8.2 Asymptotics of Ramsey number R(3,1)

R(s,t) := min{n : for every G on n vertices,

w(G) > s or a(G) >t}

R(s,t) = R(t,s), R(2,t) =t

)
Greenwood & Gleason (’55):

R(3,4) =9,
4, R(4,4) = 18

MORE:
R(3,6) =18, R(3,7) = 23, R(3,8) = 28,

R(3,9) = 36, R(4,5) = 25,
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e Ramsey number R(3,1)
Erdos(’61)
t2
R(3,t) >
( Y )—Cl(logt)Q I

Graver & Yackel(’68)

R(3,t) <c,

logt

Ajtai, Komlés and Szemerédi (’81)

t2
R(S,t) S C —t

(removed the “loglogt” factor).

t? log logt
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Little improvement on lower bound

Spencer ('77), Bollobéas (’85),

Erd6s, Suen and Winkler (793)

Krivelevich (’94)

simplified its proof and/or increased constant

Theorem (K 95)

with ¢ = 1/162 = 1/(2 - 92).
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Idea of the proof of

Recall

R(3,t) := min{n : for every G,,, w(G,) >3 or a(G,) >t}

Enough to show

3 triangle-free (G,, for which

for sufficiently large n.
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¢ Random Greedy Methods vs. Nibble Methods
- Random Greedy (or One-by-One) Construction
1. Randomly order all edges in K,

(3 (g’)' possible ways)

2. Choose edges greedily according to the random order. (An edge

cannot be chosen only if it makes a triangle with previously chosen

edges.)
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e Incremental Random Method (Nibble method)
Let

Iy : the set of all (g) edges.

a random subset Xy of I'y:

Prle € X1] :=¢/v/n for all e € T'g
independently.

Take any “maximal” (under C) family F; of edge disjoint triangles
in Xl.
Deleting all edges belong to triangles in F we obtain a A-free

graph (G; on n vertices.
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An edge e € I'y survives
if e Q X1 and
there no edges f,g € Y7 := X; s.t. efg is a triangle.

I'y be the set of all surviving edges.

a random subset X5 of I'y:

Prle € X5| :=¢/y/n for all e € T’y

independently.
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Forbidden pairs of edges:
A2 L= {euvevw D Cuvy Cow & X27 Cwu € Yl} ;

where e,,, := {v,w}.

Forbidden triples of edges:

AZ ‘= {eu'vefvwewu D Cuvs Cows Cuwu & X2}

Take any “maximal” (under C) family F5 of edge disjoint forbidden

pairs and triples in Ay U As.

Deleting all edges belong to pairs and triangles in Fs
we obtain a A-free graph

Go =G U (X2 \ UFG]:2F)

on n vertices.

228



An edge e € I'y survives
if e ¢ X9 and
there no edges f,g € Yo :=Y; U X5 s.t.
efg is a triangle.

I's be the set of all surviving edges.
At step 7, define

a random subset X; of I';_1:

Prle € X;]:=¢/y/n foralleel;

independently.
Forbidden pairs of edges:

Ai L= {euvevw - Cuvy Cvw C Xiyewu S Y;Z—l} .
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Forbidden triples of edges:
Az’ ‘= {eu'vevwewu D Cuvs Cows Cuu & Xz}

Take any “maximal” (under C) family F; of edge disjoint forbidden
pairs and triples in A; U A;.

Deleting all edges belong to pairs and triangles in F;,

we obtain a A-free graph

G; =Gi—1 U(X; \Uper, F).
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An edge e € I'; survives
if e Q Xz and
there no edges f,ge Y, =Y, 1 UX, s.t.

efg is a triangle.

Let I';11 be the set of all surviving edges.

FACT: as ¢ — 0

IU.FI

(]

| X
So, small enough ¢ = Y; =~ £(G;)

e = (logn)~2, # of steps ~ n'/17
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Z; : the collection of all independent sets in G; of size t, i.e.,

Z; =A{T :|T| =t, T indepen. in G},
where t := [9y/nlogn |.
STOP when |Z;| < 1.
possible 777
Let I';(T") be the set of surviving edges in T. Then WANT

Prop. 7.

TU(T)| > bip (;) |
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e Probabilities

Suppose F(unknown)y satisfying

p(ie)
N

Prle € Y;] = Prle € £(G;)] =

for all 2. Then
b; == PI’[@ c Pz] =777

Consider a random graph G(n,p) with edge prob. p, where

i)
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Regarding G; as G(n,p), p =

Pr[e c Fz]

On the other hand, we know
E(Git1)| = [E(Gi)| + [ Xita]

and, in expectations,

E(Gig1)| =
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¥

-
— exp(-v(ie) 5

vn
e exp(—1? (ig))n®/?

> .
As £(Giy1) = E(G;) + | X;|, we have

P+ De)n®?  d(ie)n®? | e exp(—y2(ie))n’?

Y

2 2 9

a4
Y
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In other words,

Y((i + 1)e) ~ h(ie) + e exp(—1)*(ic))

Y’ (z) = exp(—y*(x)) -

Define the function ¢ (x):

Notice that
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For A, B CV, let

FZ(A, B) = {va < Fz NS A,w c B} and FZ(A) = Fz(A,A) .
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dAi(evw,’U) < bz(az + 58)\/7

. For AN B = () with |A|,|B

T, (A, B)| <b;

Ti(4)] < bi(
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Property 7. For all T C V with |T'| = 9y/nlogn,

TU(T)| > b (;) |

Let Z; be the set of independent sets of size 9v/nlogn in G;.
Property 8.

‘Ii|§ni<7;)exp( (1—¢) ;Z:bj\//%g()>
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Definitions

For given (Y;,T';, G;), set
Ai = {Gf C Fz : g < Y;St@fg < Ao}
A; = {efgCTl:efge Ao},

Ny, (v) :={w €V i eyy € Y;} , dy,(v) := | Ny, (v)| .

Given v € V, let

{w eV ey €y}

{evw : epw €T}
[Nr, (v)| = [Mr,(v)] .
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Also, for e, €T,

NAZ (e’v’UH v)
MAZ- (evwa U)

dAi (evwa U)

Finally,

{u eV :ewepw € Ai}
{ews €Tt eypepw € A}
‘NAi(evwav)‘ — ‘MAi(evwav)‘ )

NAz (eU’UH v) U NA@ (eU’UH w)
M, (€vw, 0) U My, (v, w)

{u €V :eyepweuwy ST, }.
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All properties would seem quite natural to expect.

For example, we would expect

dAi (va,’U)
Z l(ewy € Y; and ey, €17)

ueV\eyw
nPrley, € Y; and ey, €[]

nPrley, € Yi| Prley, € I'j]

n(a;/v/n)b; = a;bi/n
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HOW TO PROVE

(a) Show the properties at the level of expectations.

(b) Prove that the random variables dy, (v) etc. are highly
concentrated near their means. For example,

Pr [dy, (v) Eldy, (v)] > 6E[dy, (v)]| < e~ 0osm”

For (b), we need martingale inequalities.
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Except Property 7:
For all T'C V with |T| = 9v/nlogn,

TU(T)| > b (;) |

Lemma 8.1 The following three conditions hold simultaneously
with probability at least 1 — 3/n?:

(i) For allv € V, |Nx,,, (v)| < biey/n +n'/*logn;
(i) For allv# w €V, |[Ng,(v) N Nx,,, (w)| <logn;

(w1) For allv# w €V, |Nx,,, (v) N Nx,,, (w)| <logn.
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Remark

1. A better constant could be possible:
€

bivn
BUT “More Complicated”.

2. R(4,t) =77

Setting p; :=

- Probably too many properties

- NOT enough independence:
HARD to guess the parameters

- ONLY (logt)” improvement:

t5/2 < R(4,t) S 3
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Giant Component

of Random graph

&
2-SATisfiability Problem
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e Random Graph G(n,p):

each of (g) edges is independently

in G(n,p) with probability p
p = 1: complete graph p = 0: empty graph

Expected number of edges
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W; : the size of the i*" largest

component of G(n, p)

o Erdés & Rényi (*60, '61)

y

< clogn, =(1—¢)/n
— @(77,2/3), p ~ 1/77,

L~ f(e)n, p=(1+¢e)/n

(e > 0), where f(e) is the positive sol. of
1= f(e) =exp(—(1+¢€)f(e))

If £ is small,

f(e) ~ 2e¢
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What if

Bollobds (’84), Luczak (’90),
Janson, Knuth, Luczak & Pittel (’94)

1—A\n—1/3
n

For p =
Wy = 0(n?2log \/A\?)

Wi = O(n?3log A/ \2),

particularly
Wi

—— — 0. as\A\— >
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and hence
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e Random Cluster Model H = H(n,p):
For fixed G = (V, F),

Pr[G(n, p) = G] o plZl(1 — p) ()~ 1El4e(@)

where ¢ > 0 and

c¢(G) = # connected components of G

(cf. Pr[G(n,p) = G] = plPI(1 — p)(2)~1P))
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Potts model on K, :

configuration o : V — {1,2, ..., q}

w(o) =exp [ B> 8(o(i),o(4))

i,jEV
17]

1 ifo(i) = 0o(j))

0 otherwise

0(a(i),0(7))
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Partition function

Z ()

253



FK (Fortuin & Kasteleyn) Representation:

23) = 3 I ePtiein

o 1,jEV
i#]

Z H (14 (eP20@o(@)) _ 1))

o 1,jJEV
i3]

Z Z H (eﬁ5(0(i)»0(j)) —1)

(o E {ij}eE
i#£]g

Z Z H ﬁé(ff(i)ﬂ(j)) —1)

o {ijleE
i 7]

For G = (V. E),

Z H (eﬁé(a(i),a(j)) —1) = (66 _ 1)|E|qc(G)

o {ij}eE
1F£]
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Wl 0 if p S (Oéc(q) —

— —

" fle,q) ifp=(ac(q) +

where f(e,q) is the positive sol. of

1_f(€7Q)

(- Dfg  oPCle@FalEo)

In fact,

0<qg<2

2(q—1) log(qg—1) :
\ : q—2g : lf q > 2
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e Satisfiability

Boolean Variables: x,, ...,z € {0,1}

Negationof z: z=1—=x

7 w
n mn

2n literals: =, ,z,,...,x

x and y are strictly distinct (s.d.)
ifx#yandx#y

C:ll\/"'\/lk

where [, ..., [, are s.d. literals

How many k-clauses??
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Take k Boolean variables out of n.

Then 4 two choices (negation or not)

for each variable.
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k-SAT Formula:

where C1, ..., ()}, are k-clauses.

F' is satisfiable if

Flx,,...,z, ) =1

19 °°

for some z,...,x_ € {0,1}
k-SAT problem: NP-Complete if £ > 3
(Pif k = 2)
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e Random k-SAT Fj(n,p):

Each k-clause appears in F'

with probability p

n
— ok
=)

Expected # of clauses

(Goerdt '92, Chvétal & Reed '92, F. de la Vega ’92) For k = 2,

. 1 if m/n—c<1
Pr|[F5 is SAT | —
0 if m/n—c>1
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Conjecture. For k > 3, 3 a(k) s.t.

. 1 if m/n—c<ak)
Pr|F} is SAT | —
0 if m/n—c>a(k)

3.14 < a(3) < 4.596

4.
¢, 2"k < a(k) < ¢, 2"

Pittel:

“Y2K Problem”
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Friedgut ('97) Let

pi_)((S) = max{p : Pr[Fy(n,p) is SAT | >1 -4}

pgjr)((?) = min{p : Pr[Fi(n,p) is SAT | <4}
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, if m/n—c<1
Pr|Fy is SAT | —
if m/n—c>1

What it

A
n

(Bollobds, Borgs, Chayes, K, Wilson) For m/n =1 — An~!/3

Pr[Fy is SAT | =1 — 0(1/)%)
For m/n =14 An~1/3

Pr[F; is SAT | = exp(—©O()\?))
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A satisfiable formula F' fizes a literal x
if

x is true (i.e. x = 1) in all satisfying assignments.

A literal x is the spine S of a formula F
iff

3 a satisfiable subformula which fixes z.
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For m/n=1—An"1/3

For m/n =14+ An~1/3
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9 Branching Process and Giant

Component

G(n,p) undergoes a remarkable change at p = 1/n. (Erd6s and
Rényi, 1960)
e p=c/n with ¢ <1
— comnsists of small components, the largest of which is of size
O(Inn).
e p=c/n withc>1

— forms a “giant component” of size O(n).
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9.1 Branching Process

Imagine the following stochastic process called branching process.
e A unisexual universe
Initially there is one [ive organism and no dead ones.

At each time unit, we select one of the live organisms, it has 7
children, and then it dies.

/Z will be Poisson with mean c.

We want to study whether or not the process continues forever.
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More precisely,
e Let Z; be the number of children of the organism selected at
time 1.
— 741,29, ... be independent random variables, each with
distribution Z.

e Let Y, be the number of live organisms at time 7. Then,

Yy, Y1, ... is given by the recursion

Yo = 1,
Yti Yti—l"i_Zi_la

267



e Let T be the least ¢ such that Y; = 0. If no such ¢ exists, we
say 1' = +o0.

e ' is the total number of organisms in the process.

e The process stops when Y; = 0 but we define the recursion for
all t.
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Theorem When E|Z] = ¢ < 1, the process dies out (T < 0o) with
probability 1.

Proof.
e SinceY;, =/41+---+7Z; —t+1,

Pr|T > t] < Pr|Y; > 0] =Pr|Zy +--- + Z; > t].

e /1 +---+4+ Z; has a Poisson distribution with mean ct. Then,

Pr[Zy + -+ Z;, > t] < (ce* ).

e From the fact that ce! ¢ < 1 for ¢ < 1,

lim Pr[T > t] =0,

t— 00

which means that Pr|T = oo] = 0.
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Theorem When E|Z] = ¢ > 1, there is a nonzero probability that

the process goes on forever (T = 00).

Proof.
e As in the proof of the previous theorem,

Pr[Z1+°--+Zt§t]§(1_5)ta
with 6 > 0.

e As > (1—4)" converges, there is a ¢ty with

> PrZi+-+Z <t <1

t=to

e Then, conditioned on Z; =1,

Yi=to+(Zo—1)+---+(Z,—1), fort>2,
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and so

Y Pr[Y; <0[Z1=to] = Y Prlt,+Zo+---Zy <t—1]

t=2 t=0

< Y PrZo+-Zi<t-1]<L
t:to—i—l

Therefore,

Pr|T = oo] > Pr[Zy =t,] (1 — i Pr|Z1 4+ ---Z; < t]) 0.

]
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Analysis using generating functions

o Let
P = PI’[Zl = Z] _C 7’/’L

and define the generating function

szx _Z —C 2/Z|_ec(x 1)
1=0
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o Let ¢; = Pr|[T =] and set

o0
q(z) = Z qix’.
i=0

e Conditioning on the first organism having s children, the

generating function for the total number of offspring is

Z;Pr[T = i|Z, = s]a’ Z Z

i=0 ji4-tjs=i—1

00
CCZ Z Qj1'°'sta?j

J=0J1++js=J

x(q(x))®.
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e Hence

O
q(z) Z ¢
i=0

1=0

ZZPT[% = 5| Pr[T =i|Z, = s]z*

’L:O S:O

ZPI’[Z1 = 5] ZPr[T = i|Z, = s]a’
s=0 i—0
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e y. = q(x)/x satisfies the functional equality v, = p(zy.), i.e.,

yw — ec(wy$_1> .

e The extinction probability

r[T < oc] = ZPr :ZQiZQ(l)ZQ(l)/1:y1

must satisfy
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o For c < 1, y = e~ has the unique solution y = 1,

corresponding to the certain extinction.
e For ¢ > 1, there are two solutions, y = 1 and y = y* € (0,1).

o As Pr|T < oo| <1, Pr|T < o] = y*.
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e When a branching process dies, we call H = (Z1, ..., Zr) the

history of the process.

e A sequence (z1,...,2) is a possible history if and only if the

sequence y; given by yo =1, y; = vy;,_1 + 2; — 1 has y; > 0 for
0<i7<tandy =0.

e When Z is Poisson with mean A\,
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e We call d < 1 < ¢ a conjugate pair if

de % = ce ¢,

e Since y* = v 1),

*

(cy™)e™ Y =ce €,

so cy™ and c is a conjugate pair.

278



e For every history H = (21, ..., 2),

e—c(ce—c)t—l
y* H§:1 2!

e~ Y (cy*e”

Pr.[H = (21,...,2)|T < o]

>k

¢ = (cy*)e” % and y*e Y =e~

since ce—

Theorem The branching process with mean c, conditional on
extinction, has the same distribution as the branching process with

mean d = cy*.
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9.2 Giant Component

We define a procedure to find the component C(v) containing a
given vertex v in a graph G = G(n, p).

e Vertices will be live, dead, or neutral.

e Originally v is live, all other vertices are neutral, and time
t =0.

e Each time ¢, take a live vertex w and check the pairs {w, w’}
for neutral w’:
— if {w,w'} € E, make w’ live.
— otherwise, leave it neutral.

Then, set w dead.

e When there are no live vertices, the process terminates.

— C(v) is the set of dead vertices.
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Let Z; be the number of w’ with {w,w’} € F at time t, and Y;

be the number of live vertices at time ¢. Then,

Y, = 1,
Yi = Yi1+24;— 1

Since no pair {w,w’} is ever examined twice,

Zy ~ Binn—(t—1) — Ys_1,p].

Let T be the least t for which Y; = 0. Then, T' = |C(v)|.

We recursively define Y; for all 0 <t < n.
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Lemma For all t,

Y; ~Binjn—1,1—(1—-p)"]+1—t.

Proof.
e Let Ny =n —t—Y,; be the number of neutral vertices at time ¢.

e Note that
N¢ ~ Binln — 1, (1 — p)*].
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e Set p=c/n.

e For fixed c,
— Y., Z7, T, H* : Poisson branching process with mean c

— Y, Z;,T,H : random graph process with G(n, ©)

e For any history (z1,...,2:),

t
PriH* = (21,...,2)] = [ [ Pr[Z* = ],
1=1

where Z* is Poisson with mean ¢ while

PrlH = (z1,...,2¢)]

where Z; ~ Binln — 1 — 21 — -+ — z;_1,¢/n].
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e For m = m(n) =n + o(n'/%) and z = o(n'/*),

PrlBinlm, o/n] =2 = () (£)*(1-£)" % = (Lol

(uniformly).

e Hence, for H = (21, ..., 2) with 22:1 2 = o(n'/%),

PrlH = (21,...,2:)] = (1 + o(n_1/4)) PrlH* = (21,...,2¢t)]

(uniformly), and so

for t = o(n'/4).
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Theorem For c <1, G(n, ©) almost always has components all of

which have size O(Inn).

Proof.
e Since Y; ~ Bin[n—1,1—(1—p)f]+1—tand 1 — (1 —p)* < tp,

PrT >t] < PrlY; > 0]

= Bin[n — 1,1 — (1 —p)] > ]
< Pr|Bin|n,tc/n| > t].

e By (generalized) Chernoff bound,

Pr[T >t] < Pr[Bin[n,tc/n] > 1]

_(1=0)%t? | (1—0)3¢3
e 2ct 203¢3

Cle—CQt

for some constants ¢y, co > 0.
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e Choose c3 satisfying cocg > 1. Then,

Pr[T > c3lnn] < cre” 2™ = ¢ n=2% = o(p~ 1),

e Since there are n choices for initial vertex v,

Pr[3v such that |C'(v)] > cslnn] < n-o(n™') = o(1).
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Theorem For ¢ > 1, G(n, ) almost always has a giant component

of size ~ (1 —y)n and all other components of size O(Inn).

Proof.
e Let tp = Klnn for a large constant K.

e First, we prove the following fact.
Claim. Let €,0 > 0 be arbitrarily small. Then,
y—e < Pr[T <ty <y-+e,
and
l—y—e<Pr[l1-90)1—ym<T<(A+6)(1l—-yn|<1—y-+e¢,

for sufficiently large n.
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Proof of Claim.

e Since Pr[T =t] = (1 + o(n~%*)) Pr[T* = t] (uniformly) for
t <t,and > =, Pr[T* =t] =y, there is N7 > 0 such that

y—e<PriT<t|<y+e

for n > Ny.
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e Note that Y; ~ Bin[n — 1,1 — (1 —p)f]+ 1 —+¢.

o Let Xy ~ Binjn—1,1—(1—p)*].
e Fort=(1+4+6)(1 —y)n = an,

Pr|T > an| < Pr|Y,, > 0] = Pr|X,, > an —1].
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o From (1 — z)V = e~ 2v+Oz"),

1 — (1 _p)om —1_ (1 o E)om —1_ e—ca—i—O(%).
n

e Since  >1—e “ for a« > 1 — gy, by Chernoff bound,
Pr[T > an| < Pr[Xa, > an—1]

(@ — 14 e "0G) ) —1)2
n

)

exp(—

< e—cln

for some constant ¢; > 0.

e Hence, we may choose Ny such that
Pr[T > (1+9)(1—y)n] <e¢

for n > Nos.
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e For t = an with n <a<(1-9)(1-y),

n

Pr[Yo, <0] < Pr[X,, <an]

O((ar — 1 + e~ 0(2))2p2)
2(1 — e =96 )
cola— 1+ e_co‘_o(%))Qn))

2(1 — e—c@=0(2))

)

< exp(—

< exp(—

for some constant cy > 0 by Chernoft bound.
e Since, for 0 < a < (1 —9)(1 —y),

(1—6)(1—y) —14e U0
(1—=0)(1—y)

we may choose c3 > 0 such that

a—14+e <L a <0,

cola— 1+ e_CO‘_O(%)f > 3’
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e For v > 0
(1 . e—COé) S (1 . e—ca)/&7

so we may choose ¢4 > 0 such that

2(1 — e_CO‘_O(%)) < ¢y

e Set c5 = g—j > 0, then

1 —ca—O(%) 2 ] 2
co(a +e 1 ) 26504265n n
2(1 — e—c@=O)) n

292



e From the above,

PI‘[Yan < O] < G—C5Klnn _ O(n—Z)7

for sufficiently large K, and so

Prito <T < (1—=6)(1 —y)n] < Pr[| ] Yan <01 =0(1/n),

where £0% < o < (1 —§)(1 — y) in the union.
e Hence, we may choose N3 such that
Prito <T < (1-90)(1—-y)n| <e

for n > Nj3.
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e Therefore, if we let N = max{Ny, Ny, N3},
y—e < Pr[T <ty <y-+e,

and

l—y—e<Pr[l1-0)(1—yn<T<(A+6)1—-y)n] <1-—y+e,

for n > N.

294



Start with G ~ G(n, p), select v = v; € G, and compute C(vy).

Then delete C'(v1), pick v2 € G — C(v1), and iterate.

Note that, at each stage, the remaining graph has distribution

G(m,p) where m is the number of vertices.
Let €, > 0 be arbitrarily small.

Call a component C(v)

/

small if |C(v)] < to,
giant if (1—-0)(1—y) <|Cw)] < (1+6)(1—1y),

| Jailure otherwise.
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_ In
o Let s = m Then,

In e
In e ln(y—l—s) In(y+e)

(y+2)° < (y+o)iT =e

e Begin the procedure with the full graph and terminate it when
— a giant component is found,
— a failure component is found,

— or s small components are found.

e At each stage, the number of remaining vertices is

m =n — O(In*n) ~ n.

— the cond. prob.’s of small, giant, and failure remain

asymptotically the same.
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e The prob. that the procedure terminates without a giant

component is at most

et(yt+e)et -+ (y+te) et (y+e) <scte=(s+1)

because (y +¢)°® < e.

e Since elne - 0ase — 0,

Ine
In(y + 2¢)

(s+1)e=( +1)e — 0

as € — 0, so (s + 1)e may be made arbitrarily small.

e Hence, we find a giant component with prob. at least
1 —(s+ 1)e.
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e The remaining graph has m ~ yn vertices.

e Then, G(m,p) = G(m, £) ~ G(m, 2).

’n
e As cy =d < 1, the maximum component size of the remaining
graph is O(Inn).
[]
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Homework 1: Exercises in pages 31, 40, 43, 52, 88, 108, 110, 112, 126
(Due 2/2/07)
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