8.2 Asymptotics of Ramsey number $R(3, t)$

$$
R(s, t):=\min \{n: \text { for every } G \text { on } n \text { vertices, }
$$

$$
\omega(G) \geq s \text { or } \alpha(G) \geq t\}
$$

EASY

$$
R(s, t)=R(t, s), \quad R(2, t)=t
$$

Greenwood \& Gleason ('55):

$$
\begin{array}{ll}
R(3,3)=6, & R(3,4)=9, \\
R(3,5)=14, & R(4,4)=18
\end{array}
$$

MORE:

$$
\begin{gathered}
R(3,6)=18, R(3,7)=23, R(3,8)=28, \\
R(3,9)=36, R(4,5)=25,
\end{gathered}
$$

- Ramsey number $R(3, t)$

Erdős('61)

$$
R(3, t) \geq c_{1} \frac{t^{2}}{(\log t)^{2}},
$$

Graver \& Yackel('68)

$$
R(3, t) \leq c_{2} \frac{t^{2} \log \log t}{\log t}
$$

Ajtai, Komlós and Szemerédi ('81)

$$
R(3, t) \leq c_{3} \frac{t^{2}}{\log t}
$$

(removed the "log $\log t "$ factor).

Little improvement on lower bound
Spencer ('77), Bollobás ('85),
Erdős, Suen and Winkler ('93)
Krivelevich ('94)
simplified its proof and/or increased constant
Theorem (K '95)

$$
R(3, t) \geq c(1-o(1)) \frac{t^{2}}{\log t}
$$

with $c=1 / 162=1 /\left(2 \cdot 9^{2}\right)$.

Idea of the proof of

$$
R(3, t) \geq c(1-o(1)) \frac{t^{2}}{\log t}
$$

Recall

$$
R(3, t):=\min \left\{n: \text { for every } G_{n}, \omega\left(G_{n}\right) \geq 3 \text { or } \alpha\left(G_{n}\right) \geq t\right\}
$$

Enough to show

$$
\begin{aligned}
& \exists \text { triangle-free } G_{n} \text { for which } \\
& \qquad \alpha\left(G_{n}\right) \leq 9 \sqrt{n \log n}
\end{aligned}
$$

for sufficiently large n.

- Random Greedy Methods vs. Nibble Methods
- Random Greedy (or One-by-One) Construction

1. Randomly order all edges in K_{n}
($\exists\binom{n}{2}$! possible ways)
2. Choose edges greedily according to the random order. (An edge cannot be chosen only if it makes a triangle with previously chosen edges.)

- Incremental Random Method (Nibble method)

Let

$$
\Gamma_{0}: \text { the set of all }\binom{n}{2} \text { edges. }
$$

Define

$$
\text { a random subset } X_{1} \text { of } \Gamma_{0} \text { : }
$$

$$
\operatorname{Pr}\left[e \in X_{1}\right]:=\varepsilon / \sqrt{n} \text { for all } e \in \Gamma_{0}
$$

independently.
Take any "maximal" (under \subseteq) family \mathcal{F}_{1} of edge disjoint triangles in X_{1}.
Deleting all edges belong to triangles in \mathcal{F} we obtain a Δ-free graph G_{1} on n vertices.

An edge $e \in \Gamma_{0}$ survives if $e \notin X_{1}$ and
there no edges $f, g \in Y_{1}:=X_{1}$ s.t. ef g is a triangle.
Let
Γ_{1} be the set of all surviving edges.
Define
a random subset X_{2} of Γ_{1} :

$$
\operatorname{Pr}\left[e \in X_{2}\right]:=\varepsilon / \sqrt{n} \text { for all } e \in \Gamma_{1}
$$

independently.

Forbidden pairs of edges:

$$
\Lambda_{2}:=\left\{e_{u v} e_{v w}: e_{u v}, e_{v w} \subseteq X_{2}, e_{w u} \in Y_{1}\right\}
$$

where $e_{v w}:=\{v, w\}$.
Forbidden triples of edges:

$$
\Delta_{2}:=\left\{e_{u v} e_{v w} e_{w u}: e_{u v}, e_{v w}, e_{w u} \subseteq X_{2}\right\}
$$

Take any "maximal" (under \subseteq) family \mathcal{F}_{2} of edge disjoint forbidden pairs and triples in $\Lambda_{2} \cup \Delta_{2}$.

Deleting all edges belong to pairs and triangles in \mathcal{F}_{2} we obtain a Δ-free graph

$$
G_{2}=G_{1} \cup\left(X_{2} \backslash \cup_{F \in \mathcal{F}_{2}} F\right)
$$

on n vertices.

An edge $e \in \Gamma_{1}$ survives

 if $e \notin X_{2}$ and there no edges $f, g \in Y_{2}:=Y_{1} \cup X_{2}$ s.t. $e f g$ is a triangle.Let
Γ_{2} be the set of all surviving edges.
At step i, define

$$
\text { a random subset } X_{i} \text { of } \Gamma_{i-1} \text { : }
$$

$$
\operatorname{Pr}\left[e \in X_{i}\right]:=\varepsilon / \sqrt{n} \text { for all } e \in \Gamma_{i-1}
$$

independently.
Forbidden pairs of edges:

$$
\Lambda_{i}:=\left\{e_{u v} e_{v w}: e_{u v}, e_{v w} \subseteq X_{i}, e_{w u} \in Y_{i-1}\right\}
$$

Forbidden triples of edges:

$$
\Delta_{i}:=\left\{e_{u v} e_{v w} e_{w u}: e_{u v}, e_{v w}, e_{w u} \subseteq X_{i}\right\}
$$

Take any "maximal" (under \subseteq) family \mathcal{F}_{i} of edge disjoint forbidden pairs and triples in $\Lambda_{i} \cup \Delta_{i}$.
Deleting all edges belong to pairs and triangles in \mathcal{F}_{i}, we obtain a Δ-free graph

$$
G_{i}=G_{i-1} \cup\left(X_{i} \backslash \cup_{F \in \mathcal{F}_{i}} F\right) .
$$

$$
\begin{aligned}
& \text { An edge } e \in \Gamma_{i} \text { survives } \\
& \text { if } e \notin X_{i} \text { and } \\
& \text { there no edges } f, g \in Y_{i}:=Y_{i-1} \cup X_{i} \text { s.t. } \\
& \text { efg is a triangle. }
\end{aligned}
$$

Let Γ_{i+1} be the set of all surviving edges.

FACT: as $\varepsilon \longrightarrow 0$

$$
\frac{\left|\bigcup_{F \in \mathcal{F}_{i}} F\right|}{\left|X_{i}\right|} \longrightarrow 0
$$

So, small enough $\varepsilon \Longrightarrow Y_{i} \approx \mathcal{E}\left(G_{i}\right)$

$$
\varepsilon=(\log n)^{-2}, \quad \# \text { of steps } \approx n^{1 / 17}
$$

\mathcal{I}_{i} : the collection of all independent sets in G_{i} of size t, i.e.,

$$
\mathcal{I}_{i}=\left\{T:|T|=t, T \text { indepen. in } G_{i}\right\},
$$

where $t:=\lceil 9 \sqrt{n \log n}\rceil$.

$$
\text { STOP when }\left|\mathcal{I}_{i}\right|<1
$$

possible ???
Let $\Gamma_{i}(T)$ be the set of surviving edges in T. Then WANT Prop. 7.

$$
\left|\Gamma_{i}(T)\right| \geq b_{i} \mu_{i}\binom{t}{2}
$$

- Probabilities

Suppose $\exists($ unknown $) \psi$ satisfying

$$
\operatorname{Pr}\left[e \in Y_{i}\right] \approx \operatorname{Pr}\left[e \in \mathcal{E}\left(G_{i}\right)\right]=\frac{\psi(i \varepsilon)}{\sqrt{n}}
$$

for all i. Then

$$
b_{i}:=\operatorname{Pr}\left[e \in \Gamma_{i}\right]=? ? ?
$$

Consider a random graph $G(n, p)$ with edge prob. p, where

$$
p=\frac{\psi(i \varepsilon)}{\sqrt{n}}
$$

Regarding G_{i} as $G(n, p), p=\frac{\psi(i \varepsilon)}{\sqrt{n}}$,

$$
\begin{aligned}
\operatorname{Pr}\left[e \in \Gamma_{i}\right] & =\left(1-p^{2}\right)^{n-2} \\
& =\left(1-\left(\frac{\psi(i \varepsilon)}{\sqrt{n}}\right)^{2}\right)^{n-2} \\
& \approx \exp \left(-\psi^{2}(i \varepsilon)\right)
\end{aligned}
$$

On the other hand, we know

$$
\left|\mathcal{E}\left(G_{i+1}\right)\right| \approx\left|\mathcal{E}\left(G_{i}\right)\right|+\left|X_{i+1}\right|
$$

and, in expectations,

$$
\begin{aligned}
\left|\mathcal{E}\left(G_{i+1}\right)\right| \approx \frac{\psi((i+1) \varepsilon)}{\sqrt{n}}\binom{n}{2} & \approx \frac{\psi((i+1) \varepsilon) n^{3 / 2}}{2} \\
\left|\mathcal{E}\left(G_{i}\right)\right| \approx \frac{\psi(i \varepsilon)}{\sqrt{n}}\binom{n}{2} & \approx \frac{\psi(i \varepsilon) n^{3 / 2}}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|X_{i+1}\right| & \approx \frac{\varepsilon}{\sqrt{n}}\left|\Gamma_{i}\right| \\
& \approx \frac{\varepsilon}{\sqrt{n}} \exp \left(-\psi^{2}(i \varepsilon)\right)\binom{n}{2} \\
& \approx \frac{\varepsilon \exp \left(-\psi^{2}(i \varepsilon)\right) n^{3 / 2}}{2}
\end{aligned}
$$

As $\mathcal{E}\left(G_{i+1}\right) \approx \mathcal{E}\left(G_{i}\right)+\left|X_{i}\right|$, we have

$$
\frac{\psi((i+1) \varepsilon) n^{3 / 2}}{2} \approx \frac{\psi(i \varepsilon) n^{3 / 2}}{2}+\frac{\varepsilon \exp \left(-\psi^{2}(i \varepsilon)\right) n^{3 / 2}}{2}
$$

In other words,

$$
\psi((i+1) \varepsilon) \approx \psi(i \varepsilon)+\varepsilon \exp \left(-\psi^{2}(i \varepsilon)\right)
$$

or

$$
\psi^{\prime}(x) \approx \exp \left(-\psi^{2}(x)\right)
$$

Define the function $\psi(x)$:

$$
x=\int_{0}^{\psi(x)} e^{\xi^{2}} d \xi
$$

Notice that

$$
\psi(x) \sim \sqrt{\log x}
$$

Let

$$
\begin{aligned}
b_{i} & :=\psi^{\prime}(i \varepsilon)=\exp \left(-\psi^{2}(i \varepsilon)\right), \\
a_{i} & :=\sum_{j=0}^{i-1} b_{j} \varepsilon=\sum_{j=0}^{i-1} \psi^{\prime}(j \varepsilon) \varepsilon=a_{i-1}+b_{i-1} \varepsilon \\
& \approx \psi(i \varepsilon)
\end{aligned}
$$

where $\varepsilon:=(\log n)^{-2}$, and

$$
\mu_{i}:=1-20 a_{i} \varepsilon-\frac{a_{i}}{3 \sqrt{\log n}}
$$

For $A, B \subseteq V$, let
$\Gamma_{i}(A, B):=\left\{e_{v w} \in \Gamma_{i}: v \in A, w \in B\right\}$ and $\Gamma_{i}(A):=\Gamma_{i}(A, A)$.

Prop. 1. $d_{Y_{i}}(v) \leq a_{i} \sqrt{n}+i n^{1 / 4}(\log n)^{2}$.

Prop. 2. $d_{\Gamma_{i}}(v) \leq b_{i} n$.

Prop. 3. $\left|N_{Y_{i}}(v) \cap N_{Y_{i}}(w)\right| \leq 3 i \log n$.

Prop. 4. $d_{\Lambda_{i}}\left(e_{v w}, v\right) \leq b_{i}\left(a_{i}+5 \varepsilon\right) \sqrt{n}$.

Prop. 5. $d_{\Delta_{i}}(e) \leq b_{i}^{2} n$.

Prop. 6. For $A \cap B=\emptyset$ with $|A|,|B| \geq \varepsilon^{2} b_{i}^{2} \sqrt{n}$,

$$
\begin{gathered}
\left|\Gamma_{i}(A, B)\right| \leq b_{i}|A||B| \\
\left|\Gamma_{i}(A)\right| \leq b_{i}\binom{|A|}{2}
\end{gathered}
$$

Property 7. For all $T \subseteq V$ with $|T|=9 \sqrt{n \log n}$,

$$
\left|\Gamma_{i}(T)\right| \geq b_{i} \mu_{i}\binom{t}{2}
$$

Let \mathcal{I}_{i} be the set of independent sets of size $9 \sqrt{n \log n}$ in G_{i}. Property 8.

$$
\left|\mathcal{I}_{i}\right| \leq n^{i}\binom{n}{t} \exp \left(-(1-\varepsilon) \sum_{j=0}^{i-1} \frac{b_{j} \mu_{j} \varepsilon}{\sqrt{n}}\binom{t}{2}\right),
$$

Definitions

For given $\left(Y_{i}, \Gamma_{i}, G_{i}\right)$, set

$$
\begin{aligned}
\Lambda_{i} & :=\left\{e f \subseteq \Gamma_{i}: \exists g \in Y_{i} \text { s.t.efg } \in \Delta_{0}\right\} \\
\Delta_{i} & :=\left\{e f g \subseteq \Gamma_{i}: \text { efg } \in \Delta_{0}\right\},
\end{aligned}
$$

and

$$
N_{Y_{i}}(v):=\left\{w \in V: e_{v w} \in Y_{i}\right\}, d_{Y_{i}}(v):=\left|N_{Y_{i}}(v)\right| .
$$

Given $v \in V$, let

$$
\begin{aligned}
N_{\Gamma_{i}}(v) & :=\left\{w \in V: e_{v w} \in \Gamma_{i}\right\} \\
\mathcal{M}_{\Gamma_{i}}(v) & :=\left\{e_{v w}: e_{v w} \in \Gamma_{i}\right\} \\
d_{\Gamma_{i}}(v) & :=\left|N_{\Gamma_{i}}(v)\right|=\left|\mathcal{M}_{\Gamma_{i}}(v)\right| .
\end{aligned}
$$

Also, for $e_{v w} \in \Gamma_{i}$,

$$
\begin{aligned}
N_{\Lambda_{i}}\left(e_{v w}, v\right) & :=\left\{u \in V: e_{u v} e_{v w} \in \Lambda_{i}\right\} \\
\mathcal{M}_{\Lambda_{i}}\left(e_{v w}, v\right) & :=\left\{e_{u v} \in \Gamma_{i}: e_{u v} e_{v w} \in \Lambda_{i}\right\} \\
d_{\Lambda_{i}}\left(e_{v w}, v\right) & :=\left|N_{\Lambda_{i}}\left(e_{v w}, v\right)\right|=\left|\mathcal{M}_{\Lambda_{i}}\left(e_{v w}, v\right)\right|
\end{aligned}
$$

and

$$
\begin{aligned}
N_{\Lambda_{i}}\left(e_{v w}\right) & :=N_{\Lambda_{i}}\left(e_{v w}, v\right) \cup N_{\Lambda_{i}}\left(e_{v w}, w\right) \\
\mathcal{M}_{\Lambda_{i}}\left(e_{v w}\right) & :=\mathcal{M}_{\Lambda_{i}}\left(e_{v w}, v\right) \cup \mathcal{M}_{\Lambda_{i}}\left(e_{v w}, w\right) .
\end{aligned}
$$

Finally,

$$
N_{\Delta_{i}}\left(e_{v w}\right):=\left\{u \in V: e_{u v} e_{v w} e_{w u} \subseteq \Gamma_{i},\right\}
$$

All properties would seem quite natural to expect.
For example, we would expect

$$
\begin{aligned}
& :=\sum_{u \in V \backslash e_{v w}}^{d_{\Lambda_{i}}\left(e_{v w}, v\right)} 1\left(e_{w u} \in Y_{i} \text { and } e_{u v} \in \Gamma_{i}\right) \\
& \approx \quad n \operatorname{Pr}\left[e_{w u} \in Y_{i} \text { and } e_{u v} \in \Gamma_{i}\right] \\
& \approx n \operatorname{Pr}\left[e_{w u} \in Y_{i}\right] \operatorname{Pr}\left[e_{w u} \in \Gamma_{i}\right] \\
& \approx n\left(a_{i} / \sqrt{n}\right) b_{i}=a_{i} b_{i} \sqrt{n}
\end{aligned}
$$

HOW TO PROVE

Prop. 1. $d_{Y_{i}}(v) \leq a_{i} \sqrt{n}+i n^{1 / 4}(\log n)^{2}$.
Prop. 2. $d_{\Gamma_{i}}(v) \leq b_{i} n$.
Prop. 3. $\left|N_{Y_{i}}(v) \cap N_{Y_{i}}(w)\right| \leq 3 i \log n$.
(a) Show the properties at the level of expectations.
(b) Prove that the random variables $d_{Y_{i}}(v)$ etc. are highly concentrated near their means. For example,

$$
\operatorname{Pr}\left[d_{Y_{i}}(v) E\left[d_{Y_{i}}(v)\right] \geq \delta E\left[d_{Y_{i}}(v)\right]\right] \leq e^{-(\log n)^{2}} .
$$

For (b), we need martingale inequalities.

Except Property 7:

For all $T \subseteq V$ with $|T|=9 \sqrt{n \log n}$,

$$
\left|\Gamma_{i}(T)\right| \geq b_{i} \mu_{i}\binom{t}{2}
$$

Lemma 8.1 The following three conditions hold simultaneously with probability at least $1-3 / n^{2}$:
(i) For all $v \in V,\left|N_{X_{i+1}}(v)\right| \leq b_{i} \varepsilon \sqrt{n}+n^{1 / 4} \log n$;
(ii) For all $v \neq w \in V,\left|N_{G_{i}}(v) \cap N_{X_{i+1}}(w)\right| \leq \log n$;
(iii) For all $v \neq w \in V,\left|N_{X_{i+1}}(v) \cap N_{X_{i+1}}(w)\right| \leq \log n$.

Remark

1. A better constant could be possible:

Setting $p_{i}:=\frac{\varepsilon}{b_{i} \sqrt{n}}$.
BUT "More Complicated".
2. $R(4, t)=?$?

- Probably too many properties
- NOT enough independence:

HARD to guess the parameters

- ONLY $(\log t)^{x}$ improvement:

$$
t^{5 / 2} \lesssim R(4, t) \lesssim t^{3}
$$

Giant Component of Random graph
2-SATisfiability Problem

- Random Graph $G(n, p)$:

$$
\begin{gathered}
\text { each of }\binom{n}{2} \text { edges is independently } \\
\text { in } G(n, p) \text { with probability } p \\
p=1: \text { complete graph } p=0: \text { empty graph }
\end{gathered}
$$

Expected number of edges

$$
p\binom{n}{2}
$$

For fixed $G=(V, E)$,

$$
\operatorname{Pr}[G(n, p)=G]=p^{|E|}(1-p)^{\binom{n}{2}-|E|}
$$

$W_{i}:$ the size of the $i^{\text {th }}$ largest
component of $G(n, p)$

- Erdős \& Rényi ('60, '61)

$$
W_{1} \begin{cases}\leq c \log n, & p=(1-\epsilon) / n \\ =\Theta\left(n^{2 / 3}\right), & \\ \sim f(\epsilon) n, & \\ \sim=(1 / n \\ \sim \varepsilon) / n\end{cases}
$$

$(\epsilon>0)$, where $f(\varepsilon)$ is the positive sol. of

$$
1-f(\varepsilon)=\exp (-(1+\varepsilon) f(\varepsilon))
$$

If ε is small,

$$
f(\varepsilon) \sim 2 \varepsilon
$$

What if

$$
p=\frac{1 \pm n^{-\delta}}{n} ? ?
$$

Bollobás ('84), Łuczak ('90),
Janson, Knuth, Łuczak \& Pittel ('94)
For $p=\frac{1-\lambda n^{-1 / 3}}{n}$

$$
\begin{aligned}
& W_{1}=\Theta\left(n^{2 / 3} \log \lambda / \lambda^{2}\right) \\
& W_{2}=\Theta\left(n^{2 / 3} \log \lambda / \lambda^{2}\right),
\end{aligned}
$$

particularly

$$
\frac{W_{1}}{n^{2 / 3}} \rightarrow 0, \quad \text { as } \lambda \rightarrow \infty
$$

For $p=\frac{1+\lambda n^{-1 / 3}}{n}$

$$
W_{1} \approx 2 \lambda n^{2 / 3}
$$

$$
W_{2}=\Theta\left(n^{2 / 3} \log \lambda / \lambda^{2}\right)
$$

and hence

$$
\begin{aligned}
& \frac{W_{1}}{n^{2 / 3}} \rightarrow \infty, \quad \text { as } \lambda \rightarrow \infty \\
& \frac{W_{2}}{n^{2 / 3}} \rightarrow 0, \quad \text { as } \lambda \rightarrow \infty
\end{aligned}
$$

- Random Cluster Model $H=H(n, p)$:

For fixed $G=(V, E)$,

$$
\operatorname{Pr}[G(n, p)=G] \propto p^{|E|}(1-p)^{\binom{n}{2}-|E|} q^{c(G)}
$$

where $q>0$ and

$$
c(G)=\# \text { connected components of } G
$$

(cf. $\left.\operatorname{Pr}[G(n, p)=G]=p^{|E|}(1-p)^{\binom{n}{2}-|E|}\right)$

Potts model on K_{n} :
configuration $\sigma: V \rightarrow\{1,2, \ldots, q\}$

$$
w(\sigma)=\exp \left(\beta \sum_{\substack{i, j \in V \\ i \neq j}} \delta(\sigma(i), \sigma(j))\right)
$$

where

$$
\delta(\sigma(i), \sigma(j))= \begin{cases}1 & \text { if } \sigma(i)=\sigma(j)) \\ 0 & \text { otherwise }\end{cases}
$$

Partition function

$$
\begin{aligned}
Z(\beta) & =\sum_{\sigma} w(\sigma) \\
& =\sum_{\sigma} \exp \left(\beta \sum_{\substack{i, j \in V \\
i \neq j}} \delta(\sigma(i), \sigma(j))\right)
\end{aligned}
$$

FK (Fortuin \& Kasteleyn) Representation:

$$
\begin{aligned}
Z(\beta) & =\sum_{\sigma} \prod_{\substack{i, j \in V \\
i \neq j}} e^{\beta \delta(\sigma(i), \sigma(j))} \\
& =\sum_{\sigma} \prod_{\substack{i, j \in V \\
i \neq j}}\left(1+\left(e^{\beta \delta(\sigma(i), \sigma(j))}-1\right)\right) \\
& =\sum_{\sigma} \sum_{E} \prod_{\substack{i, j, j\} \in E \\
i \neq j}}\left(e^{\beta \delta(\sigma(i), \sigma(j))}-1\right) \\
& =\sum_{E} \sum_{\sigma} \prod_{\substack{i, j\} \in E \\
i \neq j}}\left(e^{\beta \delta(\sigma(i), \sigma(j))}-1\right)
\end{aligned}
$$

For $G=(V, E)$,

$$
\sum_{\sigma} \prod_{\substack{\{i, j\} \in E \\ i \neq j}}\left(e^{\beta \delta(\sigma(i), \sigma(j))}-1\right)=\left(e^{\beta}-1\right)^{|E|} q^{c(G)}
$$

$\exists \alpha_{c}(q)$ s.t.

$$
\frac{W_{1}}{n} \rightarrow \begin{cases}0 & \text { if } p \leq\left(\alpha_{c}(q)-\varepsilon\right) / n \\ f(\varepsilon, q) & \text { if } p=\left(\alpha_{c}(q)+\varepsilon\right) / n\end{cases}
$$

where $f(\varepsilon, q)$ is the positive sol. of

$$
\frac{1-f(\varepsilon, q)}{1+(q-1) f(\varepsilon, q)}=\exp \left(-\left(\alpha_{c}(q)+\varepsilon\right) f(\varepsilon, q)\right)
$$

In fact,

$$
\alpha_{c}(q)=\left\{\begin{array}{cl}
q & 0<q \leq 2 \\
\frac{2(q-1) \log (q-1)}{q-2} & \text { if } q>2
\end{array}\right.
$$

- Satisfiability

Boolean Variables: $x_{1}, \ldots, x_{n} \in\{0,1\}$
Negation of $x: \bar{x}=1-x$
$2 n$ literals: $x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}$

$$
\begin{aligned}
& x \text { and } y \text { are strictly distinct (s.d.) } \\
& \quad \text { if } x \neq y \text { and } x \neq \bar{y}
\end{aligned}
$$

k-clause:

$$
C=l_{1} \bigvee \cdots \bigvee l_{k}
$$

where l_{1}, \ldots, l_{k} are s.d. literals

How many k-clauses??

Take k Boolean variables out of n.
Then \exists two choices (negation or not) for each variable.

$$
2^{k}\binom{n}{k}
$$

k-SAT Formula:

$$
F=F\left(x_{1}, \ldots, x_{n}\right)=C_{1} \bigwedge \cdots \bigwedge C_{m}
$$

where C_{1}, \ldots, C_{m} are k-clauses.
F is satisfiable if

$$
F\left(x_{1}, \ldots, x_{n}\right)=1
$$

for some $x_{1}, \ldots, x_{n} \in\{0,1\}$
k-SAT problem: NP-Complete if $k \geq 3$
(P if $k=2$)

- Random k-SAT $F_{k}(n, p)$:

Each k-clause appears in F with probability p

Expected \# of clauses

$$
m=2^{k} p\binom{n}{k}
$$

(Goerdt '92, Chvátal \& Reed '92, F. de la Vega '92) For $k=2$,

$$
\operatorname{Pr}\left[F_{2} \text { is SAT }\right] \rightarrow \begin{cases}1 & \text { if } m / n \rightarrow c<1 \\ 0 & \text { if } m / n \rightarrow c>1\end{cases}
$$

Conjecture. For $k \geq 3, \exists \alpha(k)$ s.t.

$$
\operatorname{Pr}\left[F_{k} \text { is SAT }\right] \rightarrow \begin{cases}1 & \text { if } m / n \rightarrow c<\alpha(k) \\ 0 & \text { if } m / n \rightarrow c>\alpha(k)\end{cases}
$$

Known

$$
\begin{gathered}
3.14 \leq \alpha(3) \leq 4.596 \\
c_{1} 2^{k} / k \leq \alpha(k) \leq c_{2} 2^{k}
\end{gathered}
$$

Pittel:
"Y2K Problem"

Friedgut ('97) Let

$$
p_{n}^{(-)}(\delta)=\max \left\{p: \operatorname{Pr}\left[F_{k}(n, p) \text { is SAT }\right] \geq 1-\delta\right\}
$$

and

$$
p_{n}^{(+)}(\delta)=\min \left\{p: \operatorname{Pr}\left[F_{k}(n, p) \text { is } \mathrm{SAT}\right] \leq \delta\right\}
$$

Then

$$
\left(p_{n}^{(+)}(\delta)-p_{n}^{(-)}(\delta)\right) 2^{k}\binom{n}{k}=o(1 / n)
$$

For $k=2$,

$$
\operatorname{Pr}\left[F_{2} \text { is SAT }\right] \rightarrow \begin{cases}1 & \text { if } m / n \rightarrow c<1 \\ 0 & \text { if } m / n \rightarrow c>1\end{cases}
$$

What if

$$
\frac{m}{n}=1 \pm n^{-\delta} \quad ? ?
$$

(Bollobás, Borgs, Chayes, K, Wilson) For $m / n=1-\lambda n^{-1 / 3}$

$$
\operatorname{Pr}\left[F_{2} \text { is } \mathrm{SAT}\right]=1-\Theta\left(1 / \lambda^{3}\right)
$$

For $m / n=1+\lambda n^{-1 / 3}$

$$
\operatorname{Pr}\left[F_{2} \text { is } \mathrm{SAT}\right]=\exp \left(-\Theta\left(\lambda^{3}\right)\right)
$$

Spine S_{F} :
A satisfiable formula F fixes a literal x if
x is true (i.e. $x=1$) in all satisfying assignments.

A literal x is the spine S_{F} of a formula F iff
\exists a satisfiable subformula which fixes x.

For $m / n=1-\lambda n^{-1 / 3}$

$$
\frac{E\left[\left|S_{F}\right|\right]}{n^{2 / 3}} \sim \frac{1}{2 \lambda^{2}}
$$

For $m / n=1+\lambda n^{-1 / 3}$

$$
\frac{E\left[\left|S_{F}\right|\right]}{n^{2 / 3}} \sim 4 \lambda
$$

9 Branching Process and Giant Component

$G(n, p)$ undergoes a remarkable change at $p=1 / n$. (Erdős and Rényi, 1960)

- $p=c / n$ with $c<1$
- consists of small components, the largest of which is of size $\Theta(\ln n)$.
- $p=c / n$ with $c>1$
- forms a "giant component" of size $\Theta(n)$.

9.1 Branching Process

Imagine the following stochastic process called branching process.

- A unisexual universe
- Initially there is one live organism and no dead ones.
- At each time unit, we select one of the live organisms, it has Z children, and then it dies.
- Z will be Poisson with mean c.

We want to study whether or not the process continues forever.

More precisely,

- Let Z_{i} be the number of children of the organism selected at time i.
- Z_{1}, Z_{2}, \ldots be independent random variables, each with distribution Z.
- Let Y_{i} be the number of live organisms at time i. Then, Y_{0}, Y_{1}, \ldots is given by the recursion

$$
\begin{aligned}
Y_{0} & =1 \\
Y_{i} & =Y_{i-1}+Z_{i}-1
\end{aligned}
$$

for $i \geq 1$.

- Let T be the least t such that $Y_{t}=0$. If no such t exists, we say $T=+\infty$.
- T is the total number of organisms in the process.
- The process stops when $Y_{t}=0$ but we define the recursion for all t.

Theorem When $E[Z]=c<1$, the process dies out $(T<\infty)$ with probability 1.

Proof.

- Since $Y_{t}=Z_{1}+\cdots+Z_{t}-t+1$,

$$
\operatorname{Pr}[T>t] \leq \operatorname{Pr}\left[Y_{t}>0\right]=\operatorname{Pr}\left[Z_{1}+\cdots+Z_{t} \geq t\right]
$$

- $Z_{1}+\cdots+Z_{t}$ has a Poisson distribution with mean ct. Then,

$$
\operatorname{Pr}\left[Z_{1}+\cdots+Z_{t} \geq t\right] \leq\left(c e^{1-c}\right)^{t}
$$

- From the fact that $c e^{1-c}<1$ for $c<1$,

$$
\lim _{t \rightarrow \infty} \operatorname{Pr}[T>t]=0
$$

which means that $\operatorname{Pr}[T=\infty]=0$.

Theorem When $E[Z]=c>1$, there is a nonzero probability that the process goes on forever $(T=\infty)$.

Proof.

- As in the proof of the previous theorem,

$$
\operatorname{Pr}\left[Z_{1}+\cdots+Z_{t} \leq t\right] \leq(1-\delta)^{t}
$$

with $\delta>0$.

- As $\sum_{t=1}^{\infty}(1-\delta)^{t}$ converges, there is a t_{0} with

$$
\sum_{t=t_{0}}^{\infty} \operatorname{Pr}\left[Z_{1}+\cdots+Z_{t} \leq t\right]<1
$$

- Then, conditioned on $Z_{1}=t_{0}$,

$$
Y_{t}=t_{0}+\left(Z_{2}-1\right)+\cdots+\left(Z_{t}-1\right), \quad \text { for } t \geq 2,
$$

and so

$$
\begin{aligned}
\sum_{t=2}^{\infty} \operatorname{Pr}\left[Y_{t} \leq 0 \mid Z_{1}=t_{0}\right] & =\sum_{t=0}^{\infty} \operatorname{Pr}\left[t_{0}+Z_{2}+\cdots Z_{t} \leq t-1\right] \\
& \leq \sum_{t=t_{0}+1}^{\infty} \operatorname{Pr}\left[Z_{2}+\cdots Z_{t} \leq t-1\right]<1
\end{aligned}
$$

Therefore,

$$
\operatorname{Pr}[T=\infty] \geq \operatorname{Pr}\left[Z_{1}=t_{0}\right]\left(1-\sum_{t=t_{0}}^{\infty} \operatorname{Pr}\left[Z_{1}+\cdots Z_{t} \leq t\right]\right)>0
$$

Analysis using generating functions

- Let

$$
p_{i}=\operatorname{Pr}\left[Z_{1}=i\right]=e^{-c} c^{i} / i!
$$

and define the generating function

$$
p(x)=\sum_{i=0}^{\infty} p_{i} x^{i}=\sum_{i=0}^{\infty} e^{-c} c^{i} x^{i} / i!=e^{c(x-1)}
$$

- Let $q_{i}=\operatorname{Pr}[T=i]$ and set

$$
q(x)=\sum_{i=0}^{\infty} q_{i} x^{i}
$$

- Conditioning on the first organism having s children, the generating function for the total number of offspring is

$$
\begin{aligned}
\sum_{i=0}^{\infty} \operatorname{Pr}\left[T=i \mid Z_{1}=s\right] x^{i} & =\sum_{i=0}^{\infty} \sum_{j_{1}+\cdots+j_{s}=i-1} q_{j_{1}} \cdots q_{j_{s}} x^{i} \\
& =x \sum_{j=0}^{\infty} \sum_{j_{1}+\cdots+j_{s}=j} q_{j_{1}} \cdots q_{j_{s}} x^{j} \\
& =x(q(x))^{s} .
\end{aligned}
$$

- Hence

$$
\begin{aligned}
q(x) & =\sum_{i=0}^{\infty} q_{i} x^{i} \\
& =\sum_{i=0}^{\infty} \operatorname{Pr}[T=i] x^{i} \\
& =\sum_{i=0}^{\infty} \sum_{s=0}^{\infty} \operatorname{Pr}\left[Z_{1}=s\right] \operatorname{Pr}\left[T=i \mid Z_{1}=s\right] x^{i} \\
& =\sum_{s=0}^{\infty} \operatorname{Pr}\left[Z_{1}=s\right] \sum_{i=0}^{\infty} \operatorname{Pr}\left[T=i \mid Z_{1}=s\right] x^{i} \\
& =\sum_{s=0}^{\infty} p_{s} x q(x)^{s} \\
& =x \sum_{s=0}^{\infty} p_{s} q(x)^{s}=x p(q(x)) .
\end{aligned}
$$

- $y_{x}=q(x) / x$ satisfies the functional equality $y_{x}=p\left(x y_{x}\right)$, i.e.,

$$
y_{x}=e^{c\left(x y_{x}-1\right)} .
$$

- The extinction probability

$$
y:=\operatorname{Pr}[T<\infty]=\sum_{i=0}^{\infty} \operatorname{Pr}[T=i]=\sum_{i=0}^{\infty} q_{i}=q(1)=q(1) / 1=y_{1}
$$ must satisfy

$$
y=e^{c(y-1)} .
$$

- For $c<1, y=e^{c(y-1)}$ has the unique solution $y=1$, corresponding to the certain extinction.
- For $c>1$, there are two solutions, $y=1$ and $y=y^{*} \in(0,1)$.
- As $\operatorname{Pr}[T<\infty]<1, \operatorname{Pr}[T<\infty]=y^{*}$.
- When a branching process dies, we call $H=\left(Z_{1}, \ldots, Z_{T}\right)$ the history of the process.
- A sequence $\left(z_{1}, \ldots, z_{t}\right)$ is a possible history if and only if the sequence y_{i} given by $y_{0}=1, y_{i}=y_{i-1}+z_{i}-1$ has $y_{i}>0$ for $0 \leq i<t$ and $y_{t}=0$.
- When Z is Poisson with mean λ,

$$
\operatorname{Pr}\left[H=\left(z_{1}, \ldots, z_{t}\right)\right]=\prod_{i=1}^{t} \frac{e^{-\lambda} \lambda^{z_{i}}}{z_{i}!}=\frac{e^{-\lambda}\left(\lambda e^{-\lambda}\right)^{t-1}}{\prod_{i=1}^{t} z_{i}!}
$$

since $z_{1}+\cdots+z_{t}=t-1$.

- We call $d<1<c$ a conjugate pair if

$$
d e^{-d}=c e^{-c}
$$

- Since $y^{*}=e^{c\left(y^{*}-1\right)}$,

$$
\left(c y^{*}\right) e^{-c y^{*}}=c e^{-c}
$$

so $c y^{*}$ and c is a conjugate pair.

- For every history $H=\left(z_{1}, \ldots, z_{t}\right)$,

$$
\begin{aligned}
\operatorname{Pr}_{c}\left[H=\left(z_{1}, \ldots, z_{t}\right) \mid T<\infty\right] & =\frac{e^{-c}\left(c e^{-c}\right)^{t-1}}{y^{*} \prod_{i=1}^{t} z_{i}!} \\
& =\frac{e^{-c y^{*}}\left(c y^{*} e^{-c y^{*}}\right)^{t-1}}{\prod_{i=1}^{t} z_{i}!} \\
& =\operatorname{Pr}_{d}\left[H=\left(z_{1}, \ldots, z_{t}\right)\right]
\end{aligned}
$$

since $c e^{-c}=\left(c y^{*}\right) e^{-c y^{*}}$ and $y^{*} e^{-c y^{*}}=e^{-c}$.

Theorem The branching process with mean c, conditional on extinction, has the same distribution as the branching process with mean $d=c y^{*}$.

9.2 Giant Component

We define a procedure to find the component $C(v)$ containing a given vertex v in a graph $G=G(n, p)$.

- Vertices will be live, dead, or neutral.
- Originally v is live, all other vertices are neutral, and time $t=0$.
- Each time t, take a live vertex w and check the pairs $\left\{w, w^{\prime}\right\}$ for neutral w^{\prime} :
- if $\left\{w, w^{\prime}\right\} \in E$, make w^{\prime} live.
- otherwise, leave it neutral.

Then, set w dead.

- When there are no live vertices, the process terminates.
- $C(v)$ is the set of dead vertices.
- Let Z_{t} be the number of w^{\prime} with $\left\{w, w^{\prime}\right\} \in E$ at time t, and Y_{t} be the number of live vertices at time t. Then,

$$
\begin{aligned}
Y_{0} & =1 \\
Y_{t} & =Y_{t-1}+Z_{t}-1
\end{aligned}
$$

- Since no pair $\left\{w, w^{\prime}\right\}$ is ever examined twice,

$$
Z_{t} \sim \operatorname{Bin}\left[n-(t-1)-Y_{t-1}, p\right] .
$$

- Let T be the least t for which $Y_{t}=0$. Then, $T=|C(v)|$.
- We recursively define Y_{t} for all $0 \leq t \leq n$.

Lemma For all t,

$$
Y_{t} \sim \operatorname{Bin}\left[n-1,1-(1-p)^{t}\right]+1-t
$$

Proof.

- Let $N_{t}=n-t-Y_{t}$ be the number of neutral vertices at time t.
- Note that

$$
N_{t} \sim \operatorname{Bin}\left[n-1,(1-p)^{t}\right] .
$$

- Then,

$$
\begin{aligned}
Y_{t} & =n-1-N_{t}+1-t \\
& \sim \operatorname{Bin}\left[n-1,1-(1-p)^{t}\right]+1-t .
\end{aligned}
$$

- $\operatorname{Set} p=c / n$.
- For fixed c,
$-Y_{t}^{*}, Z_{t}^{*}, T^{*}, H^{*}$: Poisson branching process with mean c
- $Y_{t}, Z_{t}, T, H:$ random graph process with $G\left(n, \frac{c}{n}\right)$
- For any history $\left(z_{1}, \ldots, z_{t}\right)$,

$$
\operatorname{Pr}\left[H^{*}=\left(z_{1}, \ldots, z_{t}\right)\right]=\prod_{i=1}^{t} \operatorname{Pr}\left[Z^{*}=z_{i}\right]
$$

where Z^{*} is Poisson with mean c while

$$
\operatorname{Pr}\left[H=\left(z_{1}, \ldots, z_{t}\right)\right]=\prod_{i=1}^{t} \operatorname{Pr}\left[Z_{i}=z_{i}\right]
$$

where $Z_{i} \sim \operatorname{Bin}\left[n-1-z_{1}-\cdots-z_{i-1}, c / n\right]$.

- For $m=m(n)=n+o\left(n^{1 / 4}\right)$ and $z=o\left(n^{1 / 4}\right)$,
$\operatorname{Pr}[\operatorname{Bin}[m, c / n]=z]=\binom{m}{z}\left(\frac{c}{n}\right)^{z}\left(1-\frac{c}{n}\right)^{m-z}=\left(1+o\left(n^{-1 / 2}\right)\right) \frac{e^{-c} c^{z}}{z!}$
(uniformly).
- Hence, for $H=\left(z_{1}, \ldots, z_{t}\right)$ with $\sum_{i=1}^{t} z_{i}=o\left(n^{1 / 4}\right)$,

$$
\operatorname{Pr}\left[H=\left(z_{1}, \ldots, z_{t}\right)\right]=\left(1+o\left(n^{-1 / 4}\right)\right) \operatorname{Pr}\left[H^{*}=\left(z_{1}, \ldots, z_{t}\right)\right]
$$

(uniformly), and so

$$
\operatorname{Pr}[T=t]=\left(1+o\left(n^{-1 / 4}\right)\right) \operatorname{Pr}\left[T^{*}=t\right]
$$

for $t=o\left(n^{1 / 4}\right)$.

Theorem For $c<1, G\left(n, \frac{c}{n}\right)$ almost always has components all of which have size $O(\ln n)$.

Proof.

- Since $Y_{t} \sim \operatorname{Bin}\left[n-1,1-(1-p)^{t}\right]+1-t$ and $1-(1-p)^{t} \leq t p$,

$$
\begin{aligned}
\operatorname{Pr}[T>t] & \leq \operatorname{Pr}\left[Y_{t}>0\right] \\
& =\operatorname{Pr}\left[\operatorname{Bin}\left[n-1,1-(1-p)^{t}\right] \geq t\right] \\
& \leq \operatorname{Pr}[\operatorname{Bin}[n, t c / n] \geq t]
\end{aligned}
$$

- By (generalized) Chernoff bound,

$$
\begin{aligned}
\operatorname{Pr}[T>t] & \leq \operatorname{Pr}[\operatorname{Bin}[n, t c / n] \geq t] \\
& \leq e^{-\frac{(1-c)^{2} t^{2}}{2 c t}+\frac{(1-c)^{3} t^{3}}{2 c^{3} t^{3}}} \\
& \leq c_{1} e^{-c_{2} t}
\end{aligned}
$$

for some constants $c_{1}, c_{2}>0$.

- Choose c_{3} satisfying $c_{2} c_{3}>1$. Then,

$$
\operatorname{Pr}\left[T>c_{3} \ln n\right] \leq c_{1} e^{-c_{2} c_{3} \ln n}=c_{1} n^{-c_{2} c_{3}}=o\left(n^{-1}\right)
$$

- Since there are n choices for initial vertex v,

$$
\operatorname{Pr}\left[\exists v \text { such that }|C(v)|>c_{3} \ln n\right] \leq n \cdot o\left(n^{-1}\right)=o(1)
$$

Theorem For $c>1, G\left(n, \frac{c}{n}\right)$ almost always has a giant component of size $\sim(1-y) n$ and all other components of size $O(\ln n)$.

Proof.

- Let $t_{0}=K \ln n$ for a large constant K.
- First, we prove the following fact.

Claim. Let $\varepsilon, \delta>0$ be arbitrarily small. Then,

$$
y-\varepsilon \leq \operatorname{Pr}\left[T \leq t_{0}\right] \leq y+\varepsilon
$$

and

$$
1-y-\varepsilon \leq \operatorname{Pr}[(1-\delta)(1-y) n<T<(1+\delta)(1-y) n] \leq 1-y+\varepsilon
$$

for sufficiently large n.

Proof of Claim.

- Since $\operatorname{Pr}[T=t]=\left(1+o\left(n^{-1 / 4}\right)\right) \operatorname{Pr}\left[T^{*}=t\right]$ (uniformly) for $t \leq t_{0}$ and $\sum_{t=1}^{\infty} \operatorname{Pr}\left[T^{*}=t\right]=y$, there is $N_{1}>0$ such that

$$
y-\varepsilon \leq \operatorname{Pr}\left[T \leq t_{0}\right] \leq y+\varepsilon
$$

for $n \geq N_{1}$.

- Note that $Y_{t} \sim \operatorname{Bin}\left[n-1,1-(1-p)^{t}\right]+1-t$.
- Let $X_{t} \sim \operatorname{Bin}\left[n-1,1-(1-p)^{t}\right]$.
- For $t=(1+\delta)(1-y) n=\alpha n$,

$$
\operatorname{Pr}[T \geq \alpha n] \leq \operatorname{Pr}\left[Y_{\alpha n} \geq 0\right]=\operatorname{Pr}\left[X_{\alpha n} \geq \alpha n-1\right] .
$$

- From $(1-x)^{y}=e^{-x y+O\left(y x^{2}\right)}$,

$$
1-(1-p)^{\alpha n}=1-\left(1-\frac{c}{n}\right)^{\alpha n}=1-e^{-c \alpha+O\left(\frac{1}{n}\right)}
$$

- Since $\alpha>1-e^{-c \alpha}$ for $\alpha>1-y$, by Chernoff bound,

$$
\begin{aligned}
\operatorname{Pr}[T \geq \alpha n] & \leq \operatorname{Pr}\left[X_{\alpha n} \geq \alpha n-1\right] \\
& \leq \exp \left(-\frac{\left(\left(\alpha-1+e^{-c \alpha-O\left(\frac{1}{n}\right)}\right) n-1\right)^{2}}{n}\right) \\
& \leq e^{-c_{1} n}
\end{aligned}
$$

for some constant $c_{1}>0$.

- Hence, we may choose N_{2} such that

$$
\operatorname{Pr}[T \geq(1+\delta)(1-y) n] \leq \varepsilon
$$

for $n \geq N_{2}$.

- For $t=\alpha n$ with $\frac{\ln ^{2} n}{n} \leq \alpha \leq(1-\delta)(1-y)$,

$$
\begin{aligned}
\operatorname{Pr}\left[Y_{\alpha n} \leq 0\right] & \leq \operatorname{Pr}\left[X_{\alpha n} \leq \alpha n\right] \\
& \leq \exp \left(-\frac{\Theta\left(\left(\alpha-1+e^{-c \alpha-O\left(\frac{1}{n}\right)}\right)^{2} n^{2}\right)}{2\left(1-e^{-c \alpha-O\left(\frac{1}{n}\right)}\right) n}\right) \\
& \leq \exp \left(-\frac{\left.c_{2}\left(\alpha-1+e^{-c \alpha-O\left(\frac{1}{n}\right)}\right)^{2} n\right)}{2\left(1-e^{-c \alpha-O\left(\frac{1}{n}\right)}\right)}\right)
\end{aligned}
$$

for some constant $c_{2}>0$ by Chernoff bound.

- Since, for $0 \leq \alpha \leq(1-\delta)(1-y)$,

$$
\alpha-1+e^{-c \alpha} \leq \frac{(1-\delta)(1-y)-1+e^{-c(1-\delta)(1-y)}}{(1-\delta)(1-y)} \alpha \leq 0
$$

we may choose $c_{3}>0$ such that

$$
c_{2}\left(\alpha-1+e^{-c \alpha-O\left(\frac{1}{n}\right)}\right)^{2} \geq c_{3} \alpha^{2}
$$

- For $\alpha \geq 0$

$$
\left(1-e^{-c \alpha}\right) \leq\left(1-e^{-c \alpha}\right)^{\prime} \alpha,
$$

so we may choose $c_{4}>0$ such that

$$
2\left(1-e^{-c \alpha-O\left(\frac{1}{n}\right)}\right) \leq c_{4} \alpha .
$$

- Set $c_{5}=\frac{c_{3}}{c_{4}}>0$, then

$$
\frac{c_{2}\left(\alpha-1+e^{-c \alpha-O\left(\frac{1}{n}\right)}\right)^{2}}{2\left(1-e^{-c \alpha-O\left(\frac{1}{n}\right)}\right)} \geq c_{5} \alpha \geq c_{5} \frac{\ln ^{2} n}{n} .
$$

- From the above,

$$
\operatorname{Pr}\left[Y_{\alpha n} \leq 0\right] \leq e^{-c_{5} K \ln n}=O\left(n^{-2}\right)
$$

for sufficiently large K, and so

$$
\operatorname{Pr}\left[t_{0} \leq T \leq(1-\delta)(1-y) n\right] \leq \operatorname{Pr}\left[\bigcup_{\alpha} Y_{\alpha n} \leq 0\right]=O(1 / n)
$$

where $\frac{K \ln n}{n} \leq \alpha \leq(1-\delta)(1-y)$ in the union.

- Hence, we may choose N_{3} such that

$$
\operatorname{Pr}\left[t_{0} \leq T \leq(1-\delta)(1-y) n\right] \leq \varepsilon
$$

for $n \geq N_{3}$.

- Therefore, if we let $N=\max \left\{N_{1}, N_{2}, N_{3}\right\}$,

$$
y-\varepsilon \leq \operatorname{Pr}\left[T \leq t_{0}\right] \leq y+\varepsilon,
$$

and
$1-y-\varepsilon \leq \operatorname{Pr}[(1-\delta)(1-y) n<T<(1+\delta)(1-y) n] \leq 1-y+\varepsilon$,
for $n \geq N$.

- Start with $G \sim G(n, p)$, select $v=v_{1} \in G$, and compute $C\left(v_{1}\right)$.
- Then delete $C\left(v_{1}\right)$, pick $v_{2} \in G-C\left(v_{1}\right)$, and iterate.
- Note that, at each stage, the remaining graph has distribution $G(m, p)$ where m is the number of vertices.
- Let $\varepsilon, \delta>0$ be arbitrarily small.
- Call a component $C(v)$

$$
\begin{cases}\text { small } & \text { if }|C(v)| \leq t_{0}, \\ \text { giant } & \text { if }(1-\delta)(1-y)<|C(v)|<(1+\delta)(1-y), \\ \text { failure } & \text { otherwise. }\end{cases}
$$

- Let $s=\frac{\ln \varepsilon}{\ln (y+2 \varepsilon)}$. Then,

$$
(y+\varepsilon)^{s}<(y+\varepsilon)^{\frac{\ln \varepsilon}{\ln (y+\varepsilon)}}=e^{\ln (y+\varepsilon)^{\frac{\ln \varepsilon}{\ln (y+\varepsilon)}}}=e^{\ln \varepsilon}=\varepsilon .
$$

- Begin the procedure with the full graph and terminate it when
- a giant component is found,
- a failure component is found,
- or s small components are found.
- At each stage, the number of remaining vertices is $m=n-O\left(\ln ^{2} n\right) \sim n$.
- the cond. prob.'s of small, giant, and failure remain asymptotically the same.
- The prob. that the procedure terminates without a giant component is at most

$$
\varepsilon+(y+\varepsilon) \varepsilon+\cdots+(y+\varepsilon)^{s-1} \varepsilon+(y+\varepsilon)^{s} \leq s \varepsilon+\varepsilon=(s+1) \varepsilon,
$$

because $(y+\varepsilon)^{s}<\varepsilon$.

- Since $\varepsilon \ln \varepsilon \rightarrow 0$ as $\varepsilon \rightarrow 0$,

$$
(s+1) \varepsilon=\left(\frac{\ln \varepsilon}{\ln (y+2 \varepsilon)}+1\right) \varepsilon \rightarrow 0
$$

as $\varepsilon \rightarrow 0$, so $(s+1) \varepsilon$ may be made arbitrarily small.

- Hence, we find a giant component with prob. at least $1-(s+1) \varepsilon$.
- The remaining graph has $m \sim y n$ vertices.
- Then, $G(m, p)=G\left(m, \frac{c}{n}\right) \sim G\left(m, \frac{c y}{m}\right)$.
- As $c y=d<1$, the maximum component size of the remaining graph is $O(\ln n)$.

Homework 1: Exercises in pages 31, 40, 43, 52, 88, 108, 110, 112, 126 (Due 2/2/07)

List of Papers

Z. Furedi, Random Polytopes in the d-Dimensional Cube, Discrete Comput. Geom. 1: 315-319 (1986).
J. Kim and J. Roche, Covering Cubes by Random Half Cubes with Applications to Binary Neural Networks, J. Comput. Syst. Sci. 56(2): 223-252 (1998).

Radhakrishnan \& Srinivasan, Improved Bounds and Algorithms for Hypergraph 2-coloring, Random Structures \& Algorithms 16, 4-32, (2000).
N. Alon, J. Kim and J. Spencer Nearly Perfect Matchings in Regular Simple Hypergraphs. Israel J. of Math. 100 (1997), 171-187.

