8.2 Asymptotics of Ramsey number R(3,t)

$$R(s,t) := \min\{n : \text{for every } G \text{ on } n \text{ vertices}, \\ \omega(G) \ge s \text{ or } \alpha(G) \ge t\}$$

EASY

$$R(s,t) = R(t,s), \qquad R(2,t) = t$$

Greenwood & Gleason ('55):

$$R(3,3) = 6, \quad R(3,4) = 9,$$

 $R(3,5) = 14, \quad R(4,4) = 18$

MORE:

$$R(3,6) = 18, R(3,7) = 23, R(3,8) = 28,$$

 $R(3,9) = 36, R(4,5) = 25,$

• Ramsey number R(3,t)

Erdős('61)

$$R(3,t) \ge c_1 \frac{t^2}{(\log t)^2}$$
,

Graver & Yackel('68)

$$R(3,t) \le c_2 \frac{t^2 \log \log t}{\log t}$$

Ajtai, Komlós and Szemerédi ('81)

$$R(3,t) \leq c_3 \frac{t^2}{\log t}$$

(removed the " $\log \log t$ " factor).

Little improvement on lower bound
Spencer ('77), Bollobás ('85),
Erdős, Suen and Winkler ('93)
Krivelevich ('94)
simplified its proof and/or increased constant
Theorem (K '95)

$$R(3,t) \ge c(1-o(1))\frac{t^2}{\log t},$$

with $c = 1/162 = 1/(2 \cdot 9^2)$.

Idea of the proof of

$$R(3,t) \ge c(1-o(1))\frac{t^2}{\log t}.$$

Recall

$$R(3,t) := \min\{n : \text{for every } G_n, \ \omega(G_n) \ge 3 \text{ or } \alpha(G_n) \ge t\}$$

Enough to show

 \exists triangle-free G_n for which

$$\alpha(G_n) \le 9\sqrt{n\log n}$$

for sufficiently large n.

• Random Greedy Methods vs. Nibble Methods

- \cdot Random Greedy (or One-by-One) Construction
- 1. Randomly order all edges in ${\cal K}_n$
- $(\exists \binom{n}{2}! \text{ possible ways})$

2. Choose edges greedily according to the random order. (An edge cannot be chosen only if it makes a triangle with previously chosen edges.)

• Incremental Random Method (Nibble method)

Let

 Γ_0 : the set of all $\binom{n}{2}$ edges.

Define

a random subset X_1 of Γ_0 :

$$\Pr[e \in X_1] := \varepsilon / \sqrt{n} \text{ for all } e \in \Gamma_0$$

independently.

Take any "maximal" (under \subseteq) family \mathcal{F}_1 of edge disjoint triangles in X_1 .

Deleting all edges belong to triangles in \mathcal{F} we obtain a Δ -free graph G_1 on n vertices.

An edge $e \in \Gamma_0$ survives if $e \notin X_1$ and there no edges $f, g \in Y_1 := X_1$ s.t. efg is a triangle.

Let

 Γ_1 be the set of all surviving edges.

Define

a random subset X_2 of Γ_1 :

$$\Pr[e \in X_2] := \varepsilon / \sqrt{n} \text{ for all } e \in \Gamma_1$$

independently.

Forbidden pairs of edges:

$$\Lambda_2 := \{ e_{uv} e_{vw} : e_{uv}, e_{vw} \subseteq X_2, e_{wu} \in Y_1 \} ,$$

where $e_{vw} := \{v, w\}.$

Forbidden triples of edges:

$$\Delta_2 := \{e_{uv}e_{vw}e_{wu} : e_{uv}, e_{vw}, e_{wu} \subseteq X_2\}$$

Take any "maximal" (under \subseteq) family \mathcal{F}_2 of edge disjoint forbidden pairs and triples in $\Lambda_2 \cup \Delta_2$.

Deleting all edges belong to pairs and triangles in \mathcal{F}_2 we obtain a Δ -free graph

 $G_2 = G_1 \cup (X_2 \setminus \cup_{F \in \mathcal{F}_2} F)$

on n vertices.

An edge $e \in \Gamma_1$ survives if $e \notin X_2$ and there no edges $f, g \in Y_2 := Y_1 \cup X_2$ s.t. efg is a triangle.

Let

 Γ_2 be the set of all surviving edges.

At step i, define

a random subset X_i of Γ_{i-1} :

$$\Pr[e \in X_i] := \varepsilon / \sqrt{n} \text{ for all } e \in \Gamma_{i-1}$$

independently.

Forbidden pairs of edges:

$$\Lambda_i := \{ e_{uv} e_{vw} : e_{uv}, e_{vw} \subseteq X_i, e_{wu} \in Y_{i-1} \} .$$

Forbidden triples of edges:

$$\Delta_i := \{e_{uv}e_{vw}e_{wu} : e_{uv}, e_{vw}, e_{wu} \subseteq X_i\}$$

Take any "maximal" (under \subseteq) family \mathcal{F}_i of edge disjoint forbidden pairs and triples in $\Lambda_i \cup \Delta_i$.

Deleting all edges belong to pairs and triangles in \mathcal{F}_i , we obtain a Δ -free graph

$$G_i = G_{i-1} \cup (X_i \setminus \bigcup_{F \in \mathcal{F}_i} F).$$

An edge $e \in \Gamma_i$ survives if $e \notin X_i$ and there no edges $f, g \in Y_i := Y_{i-1} \cup X_i$ s.t. efg is a triangle.

Let Γ_{i+1} be the set of all surviving edges.

FACT: as $\varepsilon \longrightarrow 0$ $\begin{array}{c} | \bigcup_{F \in \mathcal{F}_i} F| \\ \hline |X_i| \end{array} \longrightarrow 0 \end{array}$

So, small enough $\varepsilon \Longrightarrow Y_i \approx \mathcal{E}(G_i)$

$$\varepsilon = (\log n)^{-2}, \ \# \text{ of steps} \approx n^{1/17}$$

 \mathcal{I}_i : the collection of all independent sets in G_i of size t, i.e.,

$$\mathcal{I}_{i} = \{T : |T| = t, T \text{ indepen. in } G_{i}\},$$

where $t := \lceil 9\sqrt{n \log n} \rceil$.
STOP when $|\mathcal{I}_{i}| < 1$.
possible ???

Let $\Gamma_i(T)$ be the set of surviving edges in T. Then WANT **Prop. 7.**

$$|\Gamma_i(T)| \ge b_i \mu_i \binom{t}{2}$$
.

• Probabilities

Suppose $\exists (unknown)\psi$ satisfying

$$\Pr[e \in Y_i] \approx \Pr[e \in \mathcal{E}(G_i)] = \frac{\psi(i\varepsilon)}{\sqrt{n}},$$

for all i. Then

$$b_i := \Pr[e \in \Gamma_i] = ???$$

Consider a random graph G(n, p) with edge prob. p, where

$$p = \frac{\psi(i\varepsilon)}{\sqrt{n}}$$
.

Regarding
$$G_i$$
 as $G(n, p), p = \frac{\psi(i\varepsilon)}{\sqrt{n}},$

$$\Pr[e \in \Gamma_i] = (1 - p^2)^{n-2}$$

$$= \left(1 - \left(\frac{\psi(i\varepsilon)}{\sqrt{n}}\right)^2\right)^{n-2}$$

$$\approx \exp(-\psi^2(i\varepsilon))$$

On the other hand, we know

$$|\mathcal{E}(G_{i+1})| \approx |\mathcal{E}(G_i)| + |X_{i+1}|$$

and, in expectations,

$$|\mathcal{E}(G_{i+1})| \approx \frac{\psi((i+1)\varepsilon)}{\sqrt{n}} {n \choose 2} \approx \frac{\psi((i+1)\varepsilon)n^{3/2}}{2},$$
$$|\mathcal{E}(G_i)| \approx \frac{\psi(i\varepsilon)}{\sqrt{n}} {n \choose 2} \approx \frac{\psi(i\varepsilon)n^{3/2}}{2}$$

and

$$|X_{i+1}| \approx \frac{\varepsilon}{\sqrt{n}} |\Gamma_i|$$
$$\approx \frac{\varepsilon}{\sqrt{n}} \exp(-\psi^2(i\varepsilon)) \binom{n}{2}$$
$$\approx \frac{\varepsilon \exp(-\psi^2(i\varepsilon)) n^{3/2}}{2}.$$

As $\mathcal{E}(G_{i+1}) \approx \mathcal{E}(G_i) + |X_i|$, we have

$$\frac{\psi((i+1)\varepsilon)n^{3/2}}{2} \approx \frac{\psi(i\varepsilon)n^{3/2}}{2} + \frac{\varepsilon \exp(-\psi^2(i\varepsilon))n^{3/2}}{2}$$

•

In other words,

$$\psi((i+1)\varepsilon) \approx \psi(i\varepsilon) + \varepsilon \exp(-\psi^2(i\varepsilon))$$

or

$$\psi'(x) \approx \exp(-\psi^2(x))$$
.

Define the function $\psi(x)$:

$$x = \int_0^{\psi(x)} e^{\xi^2} d\xi$$
.

Notice that

$$\psi(x) \sim \sqrt{\log x}$$
.

Let

$$b_{i} := \psi'(i\varepsilon) = \exp(-\psi^{2}(i\varepsilon)),$$

$$a_{i} := \sum_{j=0}^{i-1} b_{j}\varepsilon = \sum_{j=0}^{i-1} \psi'(j\varepsilon)\varepsilon = a_{i-1} + b_{i-1}\varepsilon$$

$$\approx \psi(i\varepsilon)$$

where $\varepsilon := (\log n)^{-2}$, and

$$\mu_i := 1 - 20a_i\varepsilon - \frac{a_i}{3\sqrt{\log n}}$$

For $A, B \subseteq V$, let

 $\Gamma_i(A,B) := \{e_{vw} \in \Gamma_i : v \in A, w \in B\} \text{ and } \Gamma_i(A) := \Gamma_i(A,A) .$

Prop. 1.
$$d_{Y_i}(v) \le a_i \sqrt{n} + i n^{1/4} (\log n)^2$$
.

Prop. 2. $d_{\Gamma_i}(v) \leq b_i n$.

Prop. 3. $|N_{Y_i}(v) \cap N_{Y_i}(w)| \le 3i \log n.$

Prop. 4. $d_{\Lambda_i}(e_{vw}, v) \leq b_i(a_i + 5\varepsilon)\sqrt{n}$.

Prop. 5. $d_{\Delta_i}(e) \le b_i^2 n$.

Prop. 6. For $A \cap B = \emptyset$ with $|A|, |B| \ge \varepsilon^2 b_i^2 \sqrt{n}$, $|\Gamma_i(A, B)| \le b_i |A| |B|$. $|\Gamma_i(A)| \le b_i {|A| \choose 2}$. **Property 7.** For all $T \subseteq V$ with $|T| = 9\sqrt{n \log n}$, $|\Gamma_i(T)| \ge b_i \mu_i \begin{pmatrix} t \\ 2 \end{pmatrix}$.

Let \mathcal{I}_i be the set of independent sets of size $9\sqrt{n \log n}$ in G_i . **Property 8.**

$$|\mathcal{I}_i| \le n^i \binom{n}{t} \exp\left(-(1-\varepsilon) \sum_{j=0}^{i-1} \frac{b_j \mu_j \varepsilon}{\sqrt{n}} \binom{t}{2}\right),$$

Definitions

For given (Y_i, Γ_i, G_i) , set

$$\Lambda_i := \{ ef \subseteq \Gamma_i : \exists g \in Y_i \text{s.t.} efg \in \Delta_0 \}$$

$$\Delta_i := \{ efg \subseteq \Gamma_i : efg \in \Delta_0 \},$$

and

$$N_{Y_i}(v) := \{ w \in V : e_{vw} \in Y_i \} , \ d_{Y_i}(v) := |N_{Y_i}(v)| .$$
Given $v \in V$, let

$$N_{\Gamma_i}(v) := \{ w \in V : e_{vw} \in \Gamma_i \}$$

$$\mathcal{M}_{\Gamma_i}(v) := \{ e_{vw} : e_{vw} \in \Gamma_i \}$$

$$d_{\Gamma_i}(v) := |N_{\Gamma_i}(v)| = |\mathcal{M}_{\Gamma_i}(v)| .$$

Also, for $e_{vw} \in \Gamma_i$,

$$N_{\Lambda_i}(e_{vw}, v) := \{ u \in V : e_{uv} e_{vw} \in \Lambda_i \}$$

$$\mathcal{M}_{\Lambda_i}(e_{vw}, v) := \{ e_{uv} \in \Gamma_i : e_{uv} e_{vw} \in \Lambda_i \}$$

$$d_{\Lambda_i}(e_{vw}, v) := |N_{\Lambda_i}(e_{vw}, v)| = |\mathcal{M}_{\Lambda_i}(e_{vw}, v)| ,$$

and

$$N_{\Lambda_i}(e_{vw}) := N_{\Lambda_i}(e_{vw}, v) \cup N_{\Lambda_i}(e_{vw}, w)$$
$$\mathcal{M}_{\Lambda_i}(e_{vw}) := \mathcal{M}_{\Lambda_i}(e_{vw}, v) \cup \mathcal{M}_{\Lambda_i}(e_{vw}, w) .$$

Finally,

$$N_{\Delta_i}(e_{vw}) := \{ u \in V : e_{uv} e_{vw} e_{wu} \subseteq \Gamma_i, \} .$$

All properties would seem quite natural to expect.

For example, we would expect

$$d_{\Lambda_{i}}(e_{vw}, v)$$

$$:= \sum_{u \in V \setminus e_{vw}} 1(e_{wu} \in Y_{i} \text{ and } e_{uv} \in \Gamma_{i})$$

$$\approx n \Pr[e_{wu} \in Y_{i} \text{ and } e_{uv} \in \Gamma_{i}]$$

$$\approx n \Pr[e_{wu} \in Y_{i}] \Pr[e_{wu} \in \Gamma_{i}]$$

$$\approx n(a_{i}/\sqrt{n})b_{i} = a_{i}b_{i}\sqrt{n}$$

HOW TO PROVE

Prop. 1. $d_{Y_i}(v) \le a_i \sqrt{n} + i n^{1/4} (\log n)^2$. **Prop. 2.** $d_{\Gamma_i}(v) \le b_i n$. **Prop. 3.** $|N_{Y_i}(v) \cap N_{Y_i}(w)| \le 3i \log n$.

(a) Show the properties at the level of expectations.

(b) Prove that the random variables $d_{Y_i}(v)$ etc. are highly concentrated near their means. For example,

$$\Pr\left[d_{Y_i}(v)E[d_{Y_i}(v)] \ge \delta E[d_{Y_i}(v)]\right] \le e^{-(\log n)^2}$$

.

For (b), we need martingale inequalities.

Except **Property 7**:

For all $T \subseteq V$ with $|T| = 9\sqrt{n \log n}$,

$$|\Gamma_i(T)| \ge b_i \mu_i \begin{pmatrix} t \\ 2 \end{pmatrix}$$
.

Lemma 8.1 The following three conditions hold simultaneously with probability at least $1 - 3/n^2$:

(i) For all
$$v \in V$$
, $|N_{X_{i+1}}(v)| \leq b_i \varepsilon \sqrt{n} + n^{1/4} \log n$;
(ii) For all $v \neq w \in V$, $|N_{G_i}(v) \cap N_{X_{i+1}}(w)| \leq \log n$;
(iii) For all $v \neq w \in V$, $|N_{X_{i+1}}(v) \cap N_{X_{i+1}}(w)| \leq \log n$.

Remark

1. A better constant could be possible: Setting $p_i := \frac{\varepsilon}{b_i \sqrt{n}}$. BUT "More Complicated".

- 2. R(4,t) = ??
- \cdot Probably too many properties
- \cdot NOT enough independence:

HARD to guess the parameters

· ONLY $(\log t)^x$ improvement:

$$t^{5/2} \lesssim R(4,t) \lesssim t^3$$

Giant Component of Random graph 2-SATisfiability Problem

• Random Graph G(n, p):

each of $\binom{n}{2}$ edges is independently in G(n, p) with probability p

p = 1: complete graph p = 0: empty graph

Expected number of edges

$$p\binom{n}{2}$$

For fixed G = (V, E),

$$\Pr[G(n,p) = G] = p^{|E|} (1-p)^{\binom{n}{2} - |E|}$$

 W_i : the size of the i^{th} largest component of G(n, p)

• Erdős & Rényi ('60, '61)

$$W_1 \begin{cases} \leq c \log n, & p = (1 - \epsilon)/n \\ = \Theta(n^{2/3}), & p \sim 1/n \\ \sim f(\epsilon)n, & p = (1 + \epsilon)/n \end{cases}$$

 $(\epsilon > 0)$, where $f(\varepsilon)$ is the positive sol. of

$$1 - f(\varepsilon) = \exp(-(1 + \varepsilon)f(\varepsilon))$$

If ε is small,

$$f(\varepsilon) \sim 2\varepsilon$$

What if

$$p = \frac{1 \pm n^{-\delta}}{n} ??$$

Bollobás ('84), Łuczak ('90),
Janson, Knuth, Łuczak & Pittel ('94)
For
$$p = \frac{1-\lambda n^{-1/3}}{n}$$

 $W_1 = \Theta(n^{2/3} \log \lambda / \lambda^2)$
 $W_2 = \Theta(n^{2/3} \log \lambda / \lambda^2),$

particularly

$$\frac{W_1}{n^{2/3}} \to 0$$
, as $\lambda \to \infty$

For
$$p = \frac{1+\lambda n^{-1/3}}{n}$$

$$W_2 = \Theta(n^{2/3} \log \lambda / \lambda^2)$$

$$\frac{W_1}{n^{2/3}} \to \infty, \quad \text{as } \lambda \to \infty$$

$$\frac{W_2}{n^{2/3}} \to 0, \quad \text{as } \lambda \to \infty$$

_ _

• Random Cluster Model H = H(n, p):

For fixed G = (V, E), $\Pr[G(n, p) = G] \propto p^{|E|} (1 - p)^{\binom{n}{2} - |E|} q^{c(G)}$

where q > 0 and

c(G) = # connected components of G

(cf.
$$\Pr[G(n,p) = G] = p^{|E|} (1-p)^{\binom{n}{2} - |E|}$$
)

Potts model on K_n :

configuration $\sigma: V \to \{1, 2, ..., q\}$

$$w(\sigma) = \exp\left(\beta \sum_{\substack{i,j \in V \\ i \neq j}} \delta(\sigma(i), \sigma(j))\right)$$

where

$$\delta(\sigma(i), \sigma(j)) = \begin{cases} 1 & \text{if } \sigma(i) = \sigma(j) \\ 0 & \text{otherwise} \end{cases}$$

Partition function

$$Z(\beta) = \sum_{\sigma} w(\sigma)$$
$$= \sum_{\sigma} \exp\left(\beta \sum_{\substack{i,j \in V \\ i \neq j}} \delta(\sigma(i), \sigma(j))\right)$$

FK (Fortuin & Kasteleyn) Representation:

$$\begin{split} Z(\beta) &= \sum_{\sigma} \prod_{\substack{i,j \in V \\ i \neq j}} e^{\beta \delta(\sigma(i),\sigma(j))} \\ &= \sum_{\sigma} \prod_{\substack{i,j \in V \\ i \neq j}} (1 + (e^{\beta \delta(\sigma(i),\sigma(j))} - 1)) \\ &= \sum_{\sigma} \sum_{E} \prod_{\substack{\{i,j\} \in E \\ i \neq j}} (e^{\beta \delta(\sigma(i),\sigma(j))} - 1) \\ &= \sum_{E} \sum_{\sigma} \prod_{\substack{\{i,j\} \in E \\ i \neq j}} (e^{\beta \delta(\sigma(i),\sigma(j))} - 1) \end{split}$$

For G = (V, E),

$$\sum_{\sigma} \prod_{\substack{\{i,j\} \in E \\ i \neq j}} (e^{\beta \delta(\sigma(i), \sigma(j))} - 1) = (e^{\beta} - 1)^{|E|} q^{c(G)}$$

 $\exists \alpha_c(q) \text{ s.t.}$

$$\frac{W_1}{n} \to \begin{cases} 0 & \text{if } p \le (\alpha_c(q) - \varepsilon)/n \\ f(\varepsilon, q) & \text{if } p = (\alpha_c(q) + \varepsilon)/n \end{cases}$$

where $f(\varepsilon, q)$ is the positive sol. of

$$\frac{1 - f(\varepsilon, q)}{1 + (q - 1)f(\varepsilon, q)} = \exp(-(\alpha_c(q) + \varepsilon)f(\varepsilon, q))$$

In fact,

$$\alpha_{c}(q) = \begin{cases} q & 0 < q \le 2\\ \frac{2(q-1)\log(q-1)}{q-2} & \text{if } q > 2 \end{cases}$$

• Satisfiability

Boolean Variables: $x_1, ..., x_n \in \{0, 1\}$ Negation of x: $\bar{x} = 1 - x$ 2n literals: $x_1, \bar{x}_1, ..., x_n, \bar{x}_n$

> x and y are strictly distinct (s.d.) if $x \neq y$ and $x \neq \overline{y}$

k-clause:

$$C = l_1 \bigvee \cdots \bigvee l_k$$

where $l_1, ..., l_k$ are s.d. literals

How many *k*-clauses??
Take k Boolean variables out of n. Then \exists two choices (negation or not) for each variable.

$$2^k \binom{n}{k}$$

 $k\text{-}\mathrm{SAT}$ Formula:

$$F = F(x_1, \dots, x_n) = C_1 \bigwedge \dots \bigwedge C_m$$

where $C_1, ..., C_m$ are k-clauses.

F is *satisfiable* if

$$F(x_1, ..., x_n) = 1$$

for some $x_1, ..., x_n \in \{0, 1\}$ k-SAT problem: NP-Complete if $k \ge 3$ (P if k = 2) • Random k-SAT $F_k(n, p)$:

Each k-clause appears in Fwith probability p

Expected # of clauses

$$m = 2^k p \binom{n}{k}$$

(Goerdt '92, Chvátal & Reed '92, F. de la Vega '92) For k = 2,

$$\Pr[F_2 \text{ is SAT }] \to \begin{cases} 1 & \text{if } m/n \to c < 1\\ 0 & \text{if } m/n \to c > 1 \end{cases}$$

Conjecture. For $k \ge 3$, $\exists \alpha(k)$ s.t.

$$\Pr[F_k \text{ is SAT }] \to \begin{cases} 1 & \text{if } m/n \to c < \alpha(k) \\ 0 & \text{if } m/n \to c > \alpha(k) \end{cases}$$

Known

$$3.14 \le \alpha(3) \le 4.596$$
$$c_1 2^k / k \le \alpha(k) \le c_2 2^k$$

Pittel:

"Y2K Problem"

Friedgut ('97) Let

$$p_n^{(-)}(\delta) = \max\{p : \Pr[F_k(n, p) \text{ is SAT }] \ge 1 - \delta\}$$

and

$$p_n^{(+)}(\delta) = \min\{p : \Pr[F_k(n, p) \text{ is SAT }] \leq \delta\}$$

Then

$$(p_n^{(+)}(\delta) - p_n^{(-)}(\delta))2^k \binom{n}{k} = o(1/n)$$

For k = 2,

$$\Pr[F_2 \text{ is SAT }] \to \begin{cases} 1 & \text{if } m/n \to c < 1\\ 0 & \text{if } m/n \to c > 1 \end{cases}$$

What if

$$\frac{m}{n} = 1 \pm n^{-\delta} ??$$

(Bollobás, Borgs, Chayes, K, Wilson) For $m/n = 1 - \lambda n^{-1/3}$

$$\Pr[F_2 \text{ is SAT }] = 1 - \Theta(1/\lambda^3)$$

For $m/n = 1 + \lambda n^{-1/3}$

$$\Pr[F_2 \text{ is SAT }] = \exp(-\Theta(\lambda^3))$$

Spine S_F :

A satisfiable formula F fixes a literal xif x is true (i.e. x = 1) in all satisfying assignments.

A literal x is the spine S_F of a formula F iff \exists a satisfiable subformula which fixes x.

For
$$m/n = 1 - \lambda n^{-1/3}$$

$$\frac{E[|S_F|]}{n^{2/3}} \sim \frac{1}{2\lambda^2}$$

For $m/n = 1 + \lambda n^{-1/3}$
$$\frac{E[|S_F|]}{n^{2/3}} \sim 4\lambda$$

9 Branching Process and Giant Component

G(n,p) undergoes a remarkable change at p=1/n. (Erdős and Rényi, 1960)

- p = c/n with c < 1
 - consists of small components, the largest of which is of size $\Theta(\ln n).$
- p = c/n with c > 1

– forms a "giant component" of size $\Theta(n)$.

9.1 Branching Process

Imagine the following stochastic process called *branching process*.

- A unisexual universe
- Initially there is one *live* organism and no *dead* ones.
- At each time unit, we select one of the live organisms, it has Z children, and then it dies.
- Z will be Poisson with mean c.

We want to study whether or not the process continues forever.

More precisely,

- Let Z_i be the number of children of the organism selected at time i.
 - $-Z_1, Z_2, \ldots$ be independent random variables, each with distribution Z.
- Let Y_i be the number of live organisms at time *i*. Then, Y_0, Y_1, \ldots is given by the recursion

$$Y_0 = 1,$$

 $Y_i = Y_{i-1} + Z_i - 1,$

for $i \geq 1$.

- Let T be the least t such that $Y_t = 0$. If no such t exists, we say $T = +\infty$.
- T is the total number of organisms in the process.
- The process stops when $Y_t = 0$ but we define the recursion for all t.

Theorem When E[Z] = c < 1, the process dies out $(T < \infty)$ with probability 1.

Proof.

• Since $Y_t = Z_1 + \dots + Z_t - t + 1$,

$$\Pr[T > t] \le \Pr[Y_t > 0] = \Pr[Z_1 + \dots + Z_t \ge t].$$

• $Z_1 + \cdots + Z_t$ has a Poisson distribution with mean *ct*. Then,

$$\Pr[Z_1 + \dots + Z_t \ge t] \le (ce^{1-c})^t.$$

• From the fact that $ce^{1-c} < 1$ for c < 1,

$$\lim_{t \to \infty} \Pr[T > t] = 0,$$

which means that $\Pr[T = \infty] = 0$.

Theorem When E[Z] = c > 1, there is a nonzero probability that the process goes on forever $(T = \infty)$.

Proof.

• As in the proof of the previous theorem,

$$\Pr[Z_1 + \dots + Z_t \le t] \le (1 - \delta)^t,$$

with $\delta > 0$.

• As
$$\sum_{t=1}^{\infty} (1-\delta)^t$$
 converges, there is a t_0 with

$$\sum_{t=t_0}^{\infty} \Pr[Z_1 + \dots + Z_t \le t] < 1.$$

• Then, conditioned on $Z_1 = t_0$,

$$Y_t = t_0 + (Z_2 - 1) + \dots + (Z_t - 1), \text{ for } t \ge 2,$$

and so

$$\sum_{t=2}^{\infty} \Pr[Y_t \le 0 | Z_1 = t_0] = \sum_{t=0}^{\infty} \Pr[t_0 + Z_2 + \dots + Z_t \le t - 1]$$
$$\le \sum_{t=t_0+1}^{\infty} \Pr[Z_2 + \dots + Z_t \le t - 1] < 1.$$

Therefore,

$$\Pr[T = \infty] \ge \Pr[Z_1 = t_0] \left(1 - \sum_{t=t_0}^{\infty} \Pr[Z_1 + \cdots + Z_t \le t] \right) > 0.$$

Analysis using generating functions

• Let

$$p_i = \Pr[Z_1 = i] = e^{-c} c^i / i!$$

and define the generating function

$$p(x) = \sum_{i=0}^{\infty} p_i x^i = \sum_{i=0}^{\infty} e^{-c} c^i x^i / i! = e^{c(x-1)}$$

• Let $q_i = \Pr[T = i]$ and set

$$q(x) = \sum_{i=0}^{\infty} q_i x^i.$$

• Conditioning on the first organism having *s* children, the generating function for the total number of offspring is

$$\sum_{i=0}^{\infty} \Pr[T=i|Z_1=s]x^i = \sum_{i=0}^{\infty} \sum_{j_1+\dots+j_s=i-1} q_{j_1}\dots q_{j_s}x^i$$
$$= x\sum_{j=0}^{\infty} \sum_{j_1+\dots+j_s=j} q_{j_1}\dots q_{j_s}x^j$$
$$= x(q(x))^s.$$

• Hence

$$q(x) = \sum_{i=0}^{\infty} q_i x^i$$

$$= \sum_{i=0}^{\infty} \Pr[T=i] x^i$$

$$= \sum_{i=0}^{\infty} \sum_{s=0}^{\infty} \Pr[Z_1=s] \Pr[T=i|Z_1=s] x^i$$

$$= \sum_{s=0}^{\infty} \Pr[Z_1=s] \sum_{i=0}^{\infty} \Pr[T=i|Z_1=s] x^i$$

$$= \sum_{s=0}^{\infty} p_s xq(x)^s$$

$$= x \sum_{s=0}^{\infty} p_s q(x)^s = xp(q(x)).$$

• $y_x = q(x)/x$ satisfies the functional equality $y_x = p(xy_x)$, i.e.,

$$y_x = e^{c(xy_x - 1)}.$$

• The extinction probability

$$y := \Pr[T < \infty] = \sum_{i=0}^{\infty} \Pr[T = i] = \sum_{i=0}^{\infty} q_i = q(1) = q(1)/1 = y_1$$

must satisfy

$$y = e^{c(y-1)}.$$

- For c < 1, $y = e^{c(y-1)}$ has the unique solution y = 1, corresponding to the certain extinction.
- For c > 1, there are two solutions, y = 1 and $y = y^* \in (0, 1)$.
- As $\Pr[T < \infty] < 1$, $\Pr[T < \infty] = y^*$.

- When a branching process dies, we call $H = (Z_1, \ldots, Z_T)$ the *history* of the process.
- A sequence (z_1, \ldots, z_t) is a possible history if and only if the sequence y_i given by $y_0 = 1$, $y_i = y_{i-1} + z_i 1$ has $y_i > 0$ for $0 \le i < t$ and $y_t = 0$.
- When Z is Poisson with mean λ ,

$$\Pr[H = (z_1, \dots, z_t)] = \prod_{i=1}^t \frac{e^{-\lambda} \lambda^{z_i}}{z_i!} = \frac{e^{-\lambda} (\lambda e^{-\lambda})^{t-1}}{\prod_{i=1}^t z_i!},$$

since $z_1 + \dots + z_t = t - 1$.

• We call d < 1 < c a *conjugate pair* if

$$de^{-d} = ce^{-c}.$$

• Since
$$y^* = e^{c(y^*-1)}$$
,

$$(cy^*)e^{-cy^*} = ce^{-c},$$

so cy^* and c is a conjugate pair.

• For every history $H = (z_1, \ldots, z_t)$,

$$\Pr_{c}[H = (z_{1}, \dots, z_{t})|T < \infty] = \frac{e^{-c}(ce^{-c})^{t-1}}{y^{*}\prod_{i=1}^{t} z_{i}!}$$
$$= \frac{e^{-cy^{*}}(cy^{*}e^{-cy^{*}})^{t-1}}{\prod_{i=1}^{t} z_{i}!}$$
$$= \Pr_{d}[H = (z_{1}, \dots, z_{t})],$$

since $ce^{-c} = (cy^*)e^{-cy^*}$ and $y^*e^{-cy^*} = e^{-c}$.

Theorem The branching process with mean c, conditional on extinction, has the same distribution as the branching process with mean $d = cy^*$.

9.2 Giant Component

We define a procedure to find the component C(v) containing a given vertex v in a graph G = G(n, p).

- Vertices will be *live*, *dead*, or *neutral*.
- Originally v is live, all other vertices are neutral, and time t = 0.
- Each time t, take a live vertex w and check the pairs $\{w, w'\}$ for neutral w':
 - if $\{w, w'\} \in E$, make w' live.
 - otherwise, leave it neutral.

Then, set w dead.

- When there are no live vertices, the process terminates.
 - -C(v) is the set of dead vertices.

• Let Z_t be the number of w' with $\{w, w'\} \in E$ at time t, and Y_t be the number of live vertices at time t. Then,

$$Y_0 = 1,$$

 $Y_t = Y_{t-1} + Z_t - 1.$

• Since no pair $\{w, w'\}$ is ever examined twice,

$$Z_t \sim Bin[n - (t - 1) - Y_{t-1}, p].$$

- Let T be the least t for which $Y_t = 0$. Then, T = |C(v)|.
- We recursively define Y_t for all $0 \le t \le n$.

Lemma For all t,

$$Y_t \sim Bin[n-1, 1-(1-p)^t] + 1 - t.$$

Proof.

- Let $N_t = n t Y_t$ be the number of neutral vertices at time t.
- Note that

$$N_t \sim Bin[n-1, (1-p)^t].$$

• Then,

$$Y_t = n - 1 - N_t + 1 - t$$

~ $Bin[n - 1, 1 - (1 - p)^t] + 1 - t.$

- Set p = c/n.
- For fixed c,

 $-Y_t^*, Z_t^*, T^*, H^*$: Poisson branching process with mean c $-Y_t, Z_t, T, H$: random graph process with $G(n, \frac{c}{n})$

• For any history (z_1, \ldots, z_t) ,

$$\Pr[H^* = (z_1, \dots, z_t)] = \prod_{i=1}^t \Pr[Z^* = z_i],$$

where Z^* is Poisson with mean c while

$$\Pr[H = (z_1, \dots, z_t)] = \prod_{i=1}^t \Pr[Z_i = z_i],$$

where $Z_i \sim Bin[n - 1 - z_1 - \dots - z_{i-1}, c/n].$

• For
$$m = m(n) = n + o(n^{1/4})$$
 and $z = o(n^{1/4})$,

$$\Pr[Bin[m, c/n] = z] = \binom{m}{z} (\frac{c}{n})^z (1 - \frac{c}{n})^{m-z} = (1 + o(n^{-1/2})) \frac{e^{-c}c^z}{z!}$$

(uniformly).

• Hence, for $H = (z_1, ..., z_t)$ with $\sum_{i=1}^t z_i = o(n^{1/4})$,

$$\Pr[H = (z_1, \dots, z_t)] = (1 + o(n^{-1/4})) \Pr[H^* = (z_1, \dots, z_t)]$$

(uniformly), and so

$$\Pr[T = t] = (1 + o(n^{-1/4})) \Pr[T^* = t],$$
 for $t = o(n^{1/4}).$

Theorem For c < 1, $G(n, \frac{c}{n})$ almost always has components all of which have size $O(\ln n)$.

Proof.

• Since $Y_t \sim Bin[n-1, 1-(1-p)^t] + 1 - t$ and $1 - (1-p)^t \le tp$,

$$\begin{aligned} \Pr[T > t] &\leq & \Pr[Y_t > 0] \\ &= & \Pr[Bin[n-1, 1 - (1-p)^t] \geq t] \\ &\leq & \Pr[Bin[n, tc/n] \geq t]. \end{aligned}$$

• By (generalized) Chernoff bound,

$$\Pr[T > t] \leq \Pr[Bin[n, tc/n] \ge t] \\ \leq e^{-\frac{(1-c)^2 t^2}{2ct} + \frac{(1-c)^3 t^3}{2c^3 t^3}} \\ \leq c_1 e^{-c_2 t}$$

for some constants $c_1, c_2 > 0$.

• Choose c_3 satisfying $c_2c_3 > 1$. Then,

 $\Pr[T > c_3 \ln n] \le c_1 e^{-c_2 c_3 \ln n} = c_1 n^{-c_2 c_3} = o(n^{-1}).$

• Since there are n choices for initial vertex v,

 $\Pr[\exists v \text{ such that } |C(v)| > c_3 \ln n] \le n \cdot o(n^{-1}) = o(1).$

Theorem For c > 1, $G(n, \frac{c}{n})$ almost always has a giant component of size $\sim (1-y)n$ and all other components of size $O(\ln n)$.

Proof.

- Let $t_0 = K \ln n$ for a large constant K.
- First, we prove the following fact.

Claim. Let $\varepsilon, \delta > 0$ be arbitrarily small. Then,

$$y - \varepsilon \leq \Pr[T \leq t_0] \leq y + \varepsilon,$$

and

$$1 - y - \varepsilon \le \Pr[(1 - \delta)(1 - y)n < T < (1 + \delta)(1 - y)n] \le 1 - y + \varepsilon,$$

for sufficiently large n.

Proof of Claim.

• Since $\Pr[T = t] = (1 + o(n^{-1/4})) \Pr[T^* = t]$ (uniformly) for $t \le t_0$ and $\sum_{t=1}^{\infty} \Pr[T^* = t] = y$, there is $N_1 > 0$ such that $y - \varepsilon \le \Pr[T \le t_0] \le y + \varepsilon$

for $n \geq N_1$.

- Note that $Y_t \sim Bin[n-1, 1-(1-p)^t] + 1 t$.
- Let $X_t \sim Bin[n-1, 1-(1-p)^t].$

• For
$$t = (1 + \delta)(1 - y)n = \alpha n$$
,

 $\Pr[T \ge \alpha n] \le \Pr[Y_{\alpha n} \ge 0] = \Pr[X_{\alpha n} \ge \alpha n - 1].$

• From
$$(1-x)^y = e^{-xy + O(yx^2)}$$
,

$$1 - (1 - p)^{\alpha n} = 1 - (1 - \frac{c}{n})^{\alpha n} = 1 - e^{-c\alpha + O(\frac{1}{n})}.$$

• Since $\alpha > 1 - e^{-c\alpha}$ for $\alpha > 1 - y$, by Chernoff bound,

$$\Pr[T \ge \alpha n] \le \Pr[X_{\alpha n} \ge \alpha n - 1]$$

$$\le \exp(-\frac{((\alpha - 1 + e^{-c\alpha - O(\frac{1}{n})})n - 1)^2}{n})$$

$$\le e^{-c_1 n}.$$

for some constant $c_1 > 0$.

• Hence, we may choose N_2 such that

$$\Pr[T \ge (1+\delta)(1-y)n] \le \varepsilon$$

for $n \geq N_2$.

• For
$$t = \alpha n$$
 with $\frac{\ln^2 n}{n} \le \alpha \le (1 - \delta)(1 - y),$

$$\Pr[Y_{\alpha n} \le 0] \le \Pr[X_{\alpha n} \le \alpha n]$$

$$\le \exp\left(-\frac{\Theta\left((\alpha - 1 + e^{-c\alpha - O\left(\frac{1}{n}\right)})^2 n^2\right)}{2(1 - e^{-c\alpha - O\left(\frac{1}{n}\right)})n}\right)$$

$$\le \exp\left(-\frac{c_2(\alpha - 1 + e^{-c\alpha - O\left(\frac{1}{n}\right)})^2 n}{2(1 - e^{-c\alpha - O\left(\frac{1}{n}\right)})}\right)$$

for some constant $c_2 > 0$ by Chernoff bound.

• Since, for
$$0 \le \alpha \le (1 - \delta)(1 - y)$$
,

$$\alpha - 1 + e^{-c\alpha} \le \frac{(1 - \delta)(1 - y) - 1 + e^{-c(1 - \delta)(1 - y)}}{(1 - \delta)(1 - y)} \alpha \le 0,$$

we may choose $c_3 > 0$ such that

$$c_2(\alpha - 1 + e^{-c\alpha - O(\frac{1}{n})})^2 \ge c_3 \alpha^2.$$

• For $\alpha \ge 0$

$$(1 - e^{-c\alpha}) \le (1 - e^{-c\alpha})'\alpha,$$

so we may choose $c_4 > 0$ such that

$$2(1 - e^{-c\alpha - O(\frac{1}{n})}) \le c_4 \alpha.$$

• Set $c_5 = \frac{c_3}{c_4} > 0$, then

$$\frac{c_2(\alpha - 1 + e^{-c\alpha - O(\frac{1}{n})})^2}{2(1 - e^{-c\alpha - O(\frac{1}{n})})} \ge c_5\alpha \ge c_5\frac{\ln^2 n}{n}.$$
• From the above,

$$\Pr[Y_{\alpha n} \le 0] \le e^{-c_5 K \ln n} = O(n^{-2}),$$

for sufficiently large K, and so

$$\Pr[t_0 \le T \le (1-\delta)(1-y)n] \le \Pr[\bigcup_{\alpha} Y_{\alpha n} \le 0] = O(1/n),$$

where $\frac{K \ln n}{n} \le \alpha \le (1 - \delta)(1 - y)$ in the union.

• Hence, we may choose N_3 such that

$$\Pr[t_0 \le T \le (1-\delta)(1-y)n] \le \varepsilon$$

for $n \geq N_3$.

• Therefore, if we let $N = \max\{N_1, N_2, N_3\},\$

$$y - \varepsilon \le \Pr[T \le t_0] \le y + \varepsilon,$$

and

$$1 - y - \varepsilon \le \Pr[(1 - \delta)(1 - y)n < T < (1 + \delta)(1 - y)n] \le 1 - y + \varepsilon,$$

for $n > N$.

- Start with $G \sim G(n, p)$, select $v = v_1 \in G$, and compute $C(v_1)$.
- Then delete $C(v_1)$, pick $v_2 \in G C(v_1)$, and iterate.
- Note that, at each stage, the remaining graph has distribution G(m, p) where m is the number of vertices.
- Let $\varepsilon, \delta > 0$ be arbitrarily small.
- Call a component C(v)

 $\begin{cases} small & \text{if } |C(v)| \leq t_0, \\ giant & \text{if } (1-\delta)(1-y) < |C(v)| < (1+\delta)(1-y), \\ failure & \text{otherwise.} \end{cases}$

• Let
$$s = \frac{\ln \varepsilon}{\ln(y+2\varepsilon)}$$
. Then,
 $(y+\varepsilon)^s < (y+\varepsilon)^{\frac{\ln \varepsilon}{\ln(y+\varepsilon)}} = e^{\ln(y+\varepsilon)^{\frac{\ln \varepsilon}{\ln(y+\varepsilon)}}} = e^{\ln \varepsilon} = \varepsilon.$

- Begin the procedure with the full graph and terminate it when
 - a giant component is found,
 - a failure component is found,
 - or s small components are found.
- At each stage, the number of remaining vertices is $m = n - O(\ln^2 n) \sim n.$
 - the cond. prob.'s of small, giant, and failure remain asymptotically the same.

• The prob. that the procedure terminates without a giant component is at most

$$\varepsilon + (y + \varepsilon)\varepsilon + \dots + (y + \varepsilon)^{s-1}\varepsilon + (y + \varepsilon)^s \le s\varepsilon + \varepsilon = (s+1)\varepsilon,$$

because $(y + \varepsilon)^s < \varepsilon$.

• Since
$$\varepsilon \ln \varepsilon \to 0$$
 as $\varepsilon \to 0$,

$$(s+1)\varepsilon = (\frac{\ln \varepsilon}{\ln(y+2\varepsilon)} + 1)\varepsilon \to 0$$

as $\varepsilon \to 0$, so $(s+1)\varepsilon$ may be made arbitrarily small.

• Hence, we find a giant component with prob. at least $1 - (s+1)\varepsilon$.

- The remaining graph has $m \sim yn$ vertices.
- Then, $G(m, p) = G(m, \frac{c}{n}) \sim G(m, \frac{cy}{m}).$
- As cy = d < 1, the maximum component size of the remaining graph is $O(\ln n)$.

Homework 1: Exercises in pages 31, 40, 43, 52, 88, 108, 110, 112, 126 (Due 2/2/07)

List of Papers

Z. Furedi, Random Polytopes in the *d*-Dimensional Cube, Discrete Comput. Geom. 1: 315-319 (1986).

J. Kim and J. Roche, Covering Cubes by Random Half Cubes with Applications to Binary Neural Networks, J. Comput. Syst. Sci. 56(2): 223-252 (1998).

Radhakrishnan & Srinivasan, Improved Bounds and Algorithms for Hypergraph 2-coloring, Random Structures & Algorithms 16, 4-32, (2000).

N. Alon, J. Kim and J. Spencer Nearly Perfect Matchings in Regular Simple Hypergraphs. Israel J. of Math. 100 (1997), 171-187.