10 Poisson Cloning Models

Theorem (K) Supercritical region: Let $p=\frac{1+\varepsilon}{n}$ with $\varepsilon \gg n^{-1 / 3}$, and $1 \ll \alpha \ll\left(\varepsilon^{3} n\right)^{1 / 2}$. Then

$$
\operatorname{Pr}\left[\left|W(n, p)-\theta_{\varepsilon} n\right| \geq \alpha\left(\frac{n}{\varepsilon}\right)^{1 / 2}\right] \leq 2 e^{-\Omega\left(\alpha^{2}\right)} .
$$

Łuczak, 1990: With probability $1-O\left(\left(\varepsilon^{3} n\right)^{-1 / 9}\right)$,

$$
\left|W(n, p)-\theta_{\varepsilon} n\right| \leq 0.2 n^{2 / 3}
$$

(Notice that $\left(\frac{n}{\varepsilon}\right)^{1 / 2} \ll n^{2 / 3}$.)

Theorem (K) Subcritical region: Suppose $\lambda=1-\varepsilon$ with $n^{-1 / 3} \ll \varepsilon \ll 1$, then,

$$
\operatorname{Pr}\left[W(n, p) \geq \frac{\log \left(\varepsilon^{3} n\right)-2.5 \log \log \left(\varepsilon^{3} n\right)+c}{-(\varepsilon+\log (1-\varepsilon))}\right] \leq 2 e^{-\Omega(c)}
$$

and

$$
\operatorname{Pr}\left[W(n, p) \leq \frac{\log \left(\varepsilon^{3} n\right)-2.5 \log \log \left(\varepsilon^{3} n\right)-c}{-(\varepsilon+\log (1-\varepsilon))}\right] \leq 2 e^{-e^{\Omega(c)}}
$$

for a positive constant $c>0$.
improving

$$
(2-\alpha) \frac{\log \left(\varepsilon^{3} n\right)}{\varepsilon^{2}} \leq W(n, p) \leq(2+\alpha) \frac{\log \left(\varepsilon^{3} n\right)}{\varepsilon^{2}}
$$

for $\alpha \gg \max \left\{\varepsilon, \log ^{-1 / 2}\left(\varepsilon^{3} n\right)\right\}$.

We may also define the Poisson Cloning Models for
Random k-uniform hypergraphs
Random k-SAT Problems
Random Directed Graphs

Similar analyses are possible using PCM and COLA for

- The k-core problem for hypergraph (Pittel-Spencer-Wormald, ...)
- Structures of the giant component:

$$
\text { e.g. } \# \text { of vertices of degree } i \geq 2
$$

(Łuczak, Pittel, ...)

- Strong component of the random directed graph (Karp, ...)
- Pure literal rule for random k-SAT problems
(Broder-Frieze-Upfal, ...)

And more

- Unit clause algorithm for random k-SAT problems (Chao-Franco, ...)
- Karp-Sipser Algorithm
(Karp-Sipser, Aronson-Frieze-Pittel, ...)
- Giant Component of

$$
H \cup G(n, p)
$$

for a fixed graph H. (K-Spencer)

The k-core Problem

A k-core of a graph is a largest subgraph with minimum degree at least k
(due to Bollobás).

Pittel, Spencer \& Wormald ('96):
For random graph $G(n, p)$ and

$$
\lambda_{k}=\min _{\rho>0} \frac{\rho}{P(\rho, k-1)}
$$

where

$$
P(\rho, k-1):=\operatorname{Pr}(\operatorname{Poi}(\rho) \geq k-1)=e^{-\rho} \sum_{l=k-1}^{\infty} \frac{\rho^{l}}{l!}
$$

If $k \geq 3$,

$$
\operatorname{Pr}[G(n, \lambda /(n-1)) \text { has a } k \text {-core }] \rightarrow \begin{cases}0 & \text { if } \lambda<\lambda_{k}-n^{-\delta} \\ 1 & \text { if } \lambda>\lambda_{k}+n^{-\delta}\end{cases}
$$

for any $\delta \in(0,1 / 2)$, and

$$
\begin{aligned}
\operatorname{Pr}[\text { either } \exists \text { no } k \text {-core or } \exists & \left.k \text {-core of size } \geq\left(1-n^{-\delta}\right) \lambda_{k}^{*} n\right] \\
& \rightarrow 1 .
\end{aligned}
$$

Recall,

$$
\lambda_{k}=\min _{\rho>0} \frac{\rho}{P(\rho, k-1)}
$$

(improving Łuczak's result).
C. Cooper (\geq '02): Simpler proof for

$$
\operatorname{Pr}[G(n, \lambda /(n-1)) \text { has a } k \text {-core }] \rightarrow \begin{cases}0 & \text { if } \lambda<(1-\varepsilon) \lambda_{k} \\ 1 & \text { if } \lambda>(1+\varepsilon) \lambda_{k} .\end{cases}
$$

(K) For Poisson Cloning Model $G_{P C}(n, p)$ and $k \geq 3$,

$$
\begin{gathered}
\operatorname{Pr}\left[G_{P C}(n, \lambda /(n-1)) \text { has a } k \text {-core }\right] \rightarrow \\
\begin{cases}0 & \text { if } \lambda_{k}-\lambda \gg n^{-1 / 2} \\
1 & \text { if } \lambda-\lambda_{k} \gg n^{-1 / 2},\end{cases}
\end{gathered}
$$

and

$$
\begin{aligned}
& \operatorname{Pr}[\text { either } \exists \text { no } k \text {-core or } \\
& \left.\quad \exists k \text {-core of size } \geq\left(1-(\omega(n) n)^{-1 / 2}\right) \lambda_{k}^{*} n\right]=1-o(1),
\end{aligned}
$$

for any $\omega(n) \rightarrow \infty$. Recall,

$$
\lambda_{k}=\min _{\rho>0} \frac{\rho}{P(\rho, k-1)}
$$

- Poisson Cloning Model $G_{P C}(n, p)$: Definition

Take i.i.d Poisson random variables $d(v)^{\prime}$'s, $v \in V$, with mean $\lambda=p(n-1)$,
then, for each $v \in V$, take $d(v)$ copies, or clones, of v.
If $\sum_{v \in V} d(v)$ is even,
generate a (uniform) random perfect matching on the set of all clones and then contract clones of the same vertex.

If $\sum_{v \in V} d(v)$ is odd, generate a perfect match excluding a clone and a loop.

- Equivalent Definition

Take a Poisson λn random variable M_{λ} and M_{λ} unlabelled clones. Then, independently label each clone by v chosen uniformly at random among all vertices $\{1, \ldots, n\}$.

If M is even,
generate a (uniform) random perfect matching on the set of all clones and then contract clones of the same vertex.

If M is odd, generate a perfect match excluding a clone and a loop.

- Or, take a Poisson λn random variable M_{λ} and M_{λ} unlabelled clones. Assume that these clones are ordered. Take the first two clones and match them. Then, label those two clones uniformly at random.

If M is even,
this will generate a (uniform) random perfect matching as well as a valid labelling.

If M is odd, ...

$$
G(n, p) \text { vs. } G_{P C}(n, p)
$$

Theorem (K) If $p n=O(1)$, then there are positive constants c_{1} and c_{2} so that for any collection \mathcal{G} of SIMPLE graphs

$$
\operatorname{Pr}[G(n, p) \in \mathcal{G}] \geq c_{1} \operatorname{Pr}\left[G_{P C}(n, p) \in \mathcal{G}\right]
$$

and

$$
\operatorname{Pr}[G(n, p) \in \mathcal{G}] \leq c_{2}\left(\left(\operatorname{Pr}\left[G_{P C}(n, p) \in \mathcal{G}\right]\right)^{1 / 2}+e^{-n}\right)
$$

In particular,

$$
\begin{array}{llll}
\operatorname{Pr}[G(n, p) \in \mathcal{G}] \rightarrow 0 & \text { iff } & \operatorname{Pr}\left[G_{P C}(n, p) \in \mathcal{G}\right] \rightarrow 0, \quad \text { and } \\
\operatorname{Pr}[G(n, p) \in \mathcal{G}] \rightarrow 1 & \text { iff } & \operatorname{Pr}\left[G_{P C}(n, p) \in \mathcal{G}\right] \rightarrow 1 .
\end{array}
$$

Proof. For $\lambda=p(n-1)$ and a fixed simple graph G with m edges,

$$
\begin{aligned}
& \operatorname{Pr}\left[G_{P C}(n, p)=G\right] \\
& =\operatorname{Pr}\left[M_{\lambda}=2 m\right] \cdot\left(m \frac{2}{n} \frac{1}{n}\right)\left((m-1) \frac{2}{n} \frac{1}{n}\right) \cdots\left(1 \frac{2}{n} \frac{1}{n}\right) \\
& =\frac{e^{-\lambda n}(\lambda n)^{2 m}}{(2 m)!} \frac{2^{m} m!}{n^{2 m}}
\end{aligned}
$$

Using

$$
\begin{aligned}
(2 m)! & =\left(1+O\left(\frac{1}{m}\right)\right)(4 \pi m)^{1 / 2}\left(\frac{2 m}{e}\right)^{2 m} \\
& =\left(1+O\left(\frac{1}{m}\right)\right)(\pi m)^{-1 / 2} 2^{2 m}\left((2 \pi m)^{1 / 2}\left(\frac{m}{e}\right)^{m}\right)^{2} \\
& =\left(1+O\left(\frac{1}{m}\right)\right)(\pi m)^{-1 / 2} 2^{2 m}(m!)^{2}
\end{aligned}
$$

Using

$$
(2 m)!=\left(1+O\left(\frac{1}{m}\right)\right)(\pi m)^{-1 / 2} 2^{2 m}(m!)^{2}
$$

we have

$$
\begin{aligned}
\operatorname{Pr}\left[G_{P C}(n, p)=G\right] & =\frac{e^{-\lambda n}(\lambda n)^{2 m}}{(2 m)!} \frac{2^{m} m!}{n^{2 m}} \\
& =\left(\frac{\lambda}{n}\right)^{m} e^{-\lambda n / 2+O\left(\frac{1}{m}\right)} \frac{(\pi m)^{1 / 2} e^{-\lambda n / 2}\left(\frac{\lambda n}{2}\right)^{m}}{m!}
\end{aligned}
$$

On the other hand, $\lambda=p(n-1)$ yields,

$$
\begin{aligned}
\operatorname{Pr}[G(n, p)=G] & =p^{m}(1-p)^{\binom{n}{2}-m} \\
& =\left(\frac{\lambda}{n-1}\right)^{m} e^{-\lambda n / 2+p m-p^{2} n^{2} / 4+O\left(p^{2} m+p^{3} n^{2}\right)}
\end{aligned}
$$

Take the smallest $\ell_{1}, \ell_{2}>0$ such that, if $m \leq \lambda n / 2-\ell_{1}$ or $m \geq \lambda n / 2+\ell_{2}$, then

$$
\frac{(2 \pi \lambda n)^{1 / 2} e^{-\lambda n / 2}\left(\frac{\lambda n}{2}\right)^{m}}{m!} \leq \operatorname{Pr}\left[G_{P C}(n, p) \in \mathcal{G}\right]^{1 / 2}+e^{-n}
$$

It is easy to check that $\ell_{1}, \ell_{2} \leq c n$ for a constant c independent of $\operatorname{Pr}\left[G_{P C}(n, p) \in \mathcal{G}\right]$. We consider

$$
\begin{array}{r}
\operatorname{Pr}[G(n, p) \in \mathcal{G}]= \\
+\sum_{\substack{G \in \mathcal{G} \\
-\ell_{1}<|G|-\lambda n / 2<\ell_{2}}} \operatorname{Pr}[G(n, p)=G] \\
+\sum_{\substack{G \in \mathcal{G} \\
|G| \leq \lambda n / 2-\ell_{1}}} \operatorname{Pr}[G(n, p)=G] \\
+\sum_{\substack{G \in \mathcal{G} \\
|G| \geq \lambda n / 2+\ell_{1}}} \operatorname{Pr}[G(n, p)=G] .
\end{array}
$$

First,

$$
\begin{aligned}
& \operatorname{Pr}\left[G_{P C}(n, p) \in \mathcal{G}\right] \\
& \geq \sum_{\substack{G G \mathcal{G} \\
-\ell_{1}<|G|-\lambda n / 2<\ell_{2}}} \operatorname{Pr}\left[G_{P C}(n, p)=G\right] \\
& \geq c_{1}^{-1} \sum_{\substack{G \in \mathcal{G} \\
-\ell_{1}<|G|-\lambda n / 2<\ell_{2}}} \operatorname{Pr}[G(n, p)=G] \operatorname{Pr}\left[G_{P C}(n, p) \in \mathcal{G}\right]^{1 / 2}
\end{aligned}
$$

gives

$$
\sum_{\substack{G \in \mathcal{G} \\-\ell_{1}<|G|-\lambda n / 2<\ell_{2}}} \operatorname{Pr}[G(n, p)=G] \leq c_{1} \operatorname{Pr}\left[G_{P C}(n, p) \in \mathcal{G}\right]^{1 / 2}
$$

Second, by $p\binom{n}{2}=\lambda n / 2$, it is easy to check that

$$
\begin{aligned}
& \begin{array}{l}
\sum_{\substack{G \in \mathcal{G} \\
|G| \leq \lambda n / 2-\ell_{1}}} \operatorname{Pr}[G(n, p)=G]
\end{array} \quad \leq \sum_{\ell \leq \lambda n / 2-\ell_{1}} \operatorname{Pr}\left[\operatorname{Bin}\left(\binom{n}{2}, p\right)=\ell\right] \\
& \leq c_{2} \sum_{\ell \leq \lambda n / 2-\ell_{1}} \operatorname{Pr}[\operatorname{Poi}(\lambda n / 2)=\ell] \\
& \\
& \leq\left(c_{2}+o(1)\right)(\pi \lambda n)^{1 / 2} \operatorname{Pr}\left[\operatorname{Poi}(\lambda n / 2)=\lambda n / 2-\ell_{1}\right] . \\
& \text { Ex 1. } \left.\operatorname{Pr}[\operatorname{Bin}(m, p)=\ell]=O\left(e^{O\left(p^{2} m\right)} \operatorname{Pr}[\operatorname{Poi}(p m)]=\ell\right]\right) \\
& \text { 2a. } \quad \sum_{\quad \ell \leq \lambda n / 2-\ell_{1}} \operatorname{Pr}[\operatorname{Poi}(\lambda n / 2)=\ell] \\
& \quad \leq(1+o(1))(\pi \lambda n)^{1 / 2} \operatorname{Pr}\left[\operatorname{Poi}(\lambda n / 2)=\lambda n / 2-\ell_{1}\right]
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\sum_{\substack{G \in \mathcal{G} \\
|G| \geq \lambda n / 2+\ell_{2}}} \operatorname{Pr}[G(n, p)=G] & \leq \sum_{\ell \geq \lambda n / 2+\ell_{2}} \operatorname{Pr}\left[\operatorname{Bin}\left(\binom{n}{2}, p\right)=\ell\right] \\
& \leq c_{3} \sum_{\ell \geq \lambda n / 2+\ell_{2}} \operatorname{Pr}[\operatorname{Poi}(\lambda n / 2)=\ell]
\end{aligned}
$$

Ex.

$$
\text { 2b. } \quad \sum_{\ell \geq \lambda n / 2+\ell_{2}} \operatorname{Pr}[\operatorname{Poi}(\lambda n / 2)=\ell] \quad \begin{aligned}
& \quad \leq(1+o(1))(\pi \lambda n)^{1 / 2} \operatorname{Pr}\left[\operatorname{Poi}(\lambda n / 2)=\lambda n / 2+\ell_{2}\right]
\end{aligned}
$$

11 Cut-Off Line Lemma

For θ in the range $0 \leq \theta \leq 1$, let $\Lambda(\theta)$ be the cut-off value when $\left(1-\theta^{2}\right) \lambda n$ or more clones are matched for the first time.
Conversely, let $M(\theta)$ be the number of matched clones until the cut-off line reaches $\theta \lambda$.

Lemma 11.1 (Cut-off Line Lemma) For $\theta_{1}<1$ uniformly bounded below from 0 and $0<\Delta \leq n$,

$$
\operatorname{Pr}\left[\max _{\theta: \theta_{1} \leq \theta \leq 1}|\Lambda(\theta)-\theta \lambda| \geq \frac{\Delta}{n}\right] \leq 2 e^{-\Omega\left(\min \left\{\Delta, \frac{\Delta^{2}}{\left(1-\theta_{1}\right) n}\right\}\right)},
$$

and

$$
\operatorname{Pr}\left[\max _{\theta: \theta_{1} \leq \theta \leq 1}\left|M(\theta)-\left(1-\theta^{2}\right) \lambda n\right| \geq \Delta\right] \leq 2 e^{-\Omega\left(\min \left\{\Delta, \frac{\Delta^{2}}{\left(1-\theta_{1}\right) n}\right\}\right)}
$$

Conditioned on $M_{\lambda}=M$, that is, there are M clones initially. Then,

$$
E\left[\Lambda_{1}\right]=\left(1-\frac{1}{M-1}\right) \lambda=\left(1-\frac{1}{M-1}\right) \Lambda_{0}
$$

since we took the largest number among $M-1$ i.i.d uniform random numbers from 0 to λ. Similarly, in expectation,

$$
E\left[\Lambda_{i+1} \mid \Lambda_{i}\right]=\left(1-\frac{1}{M-2 i-1}\right) \Lambda_{i}
$$

Precisely,

$$
\Lambda_{i+1}=\left(1-T_{i}\right) \Lambda_{i}=\lambda \prod_{j=0}^{i}\left(1-T_{j}\right)
$$

where T_{i} are mutually independent and

$$
T_{i}=\min . \text { of } M-2 i-1 \text { uniform random numbers in }[0,1],
$$

i.e,

$$
\operatorname{Pr}\left[T_{i} \geq t\right]=(1-t)^{M-2 i-1} \approx e^{-(M-2 i-1) t}
$$

-Why $M(\theta)=\left(1-\theta^{2}\right) \lambda n$?

At $\Lambda=\theta \lambda$, or simply at $\theta \lambda$, (that is, when the cut-off line reaches $\theta \lambda$),

$$
\Delta(\theta \lambda) \approx\left(1-\frac{1}{\lambda n-M(\theta)-1}\right) \theta \lambda-\theta \lambda
$$

implies

$$
\Delta \theta \approx \frac{-\theta}{\lambda n-M(\theta)-1} .
$$

Clearly, $\Delta N(\theta)=2$. Hence,

$$
\frac{\Delta M}{\Delta \theta} \approx \frac{-2(\lambda n-M(\theta)-1)}{\theta}
$$

Lemma 11.2 Given $M_{\lambda}=M$, let T_{j} 's be mutually independent, $j=M, M-1, \ldots, M-2 \ell$ with $N-2 \ell \gg 1$. Then, denoting $\theta_{i}=(1-2 i / M)^{1 / 2}$, we have, for $\varepsilon \leq 0.1$,
$\operatorname{Pr}\left[\max _{i: 1 \leq i \leq \ell}\left|\prod_{\substack{j=M \\ 2 \mid(M-j)}}^{M-2 i}\left(1-T_{j}\right)-\theta_{i}\right| \geq \varepsilon\right] \leq 10 e^{-\frac{1+o(1)}{7} \min \left\{\varepsilon \theta_{\ell}^{2} M, \frac{\varepsilon^{2} \theta_{\ell}^{2} M}{1-\theta_{\ell}}\right\}}$.
In particular, if $\theta_{\ell}=\Omega(1)$, then

$$
\operatorname{Pr}\left[\max _{i: 1 \leq i \leq \ell}\left|\prod_{\substack{j=M \\ 2 \mid(M-j)}}^{M-2 i}\left(1-T_{j}\right)-\theta_{i}\right| \geq \varepsilon\right] \leq 2 e^{-\Omega\left(\operatorname { m i n } \left\{\varepsilon M, \frac{\varepsilon^{2} M}{\left.\left.1-\theta_{\ell}\right\}\right)}\right.\right.}
$$

Recall

$$
T_{i}=\min . \text { of } M-2 i-1 \text { uniform random numbers in }[0,1]
$$

i.e,

$$
\operatorname{Pr}\left[T_{i} \geq t\right]=(1-t)^{M-2 i-1} \approx e^{-(M-2 i-1) t}
$$

Proof. Proof of Lemma 11.2 As

$$
\prod_{\substack{j=M \\ 2 \mid(M-j)}}^{\theta_{i}^{2} M}\left(1-T_{j}\right)=\exp \left(\sum_{\substack{j=M \\ 2 \mid(M-j)}}^{\theta_{i}^{2} M} \log \left(1-T_{j}\right)\right)
$$

we show a high concentration for $\log \left(1-T_{j}\right)$. Since

$$
\operatorname{Pr}\left[\exists j, T_{j} \geq 1 / 2\right] \leq \sum_{j=M}^{\theta_{\ell}^{2} M} 2^{-j+1} \leq 2^{-\theta_{\ell}^{2} M+2}
$$

and

$$
-x-x^{2} \leq \log (1-x) \leq-x \quad \forall x: 0 \leq x \leq 1 / 2
$$

we have, with probability at least $1-2^{-\theta_{\ell}^{k} M+2}$,

$$
-T_{j}-T_{j}^{2} \leq \log \left(1-T_{j}\right) \leq-T_{j}, \quad \text { for all } j
$$

Thus, for $S_{j}=T_{j}-T_{j}^{2}$, and

$$
T_{i}^{*}:=\sum_{\substack{j=M \\ 2 \mid(M-j)}}^{\theta_{i}^{2} M} T_{j} \text {, and } S_{i}^{*}:=\sum_{\substack{j=N \\ 2 \mid(M-j)}}^{\theta_{i}^{2} M} S_{j},
$$

it is enough to show that both of $E\left[S_{i}^{*}\right]$ and $E\left[T_{i}^{*}\right]$ are very close to θ_{i} and S_{i}^{*}, T_{i}^{*} are highly concentrated near their means. That is, it is enough to show that

$$
\operatorname{Pr}\left[\max _{i}\left|S_{i}^{*}-E\left[S_{i}^{*}\right]\right| \geq \varepsilon\right] \leq 4 e^{-\frac{1+o(1)}{6} \min \left\{\frac{\varepsilon^{2} \theta_{\varepsilon}^{2} M}{1-\theta_{\ell}}, \varepsilon \theta_{\ell}^{2} M\right\}},
$$

and

$$
\operatorname{Pr}\left[\max _{i}\left|T_{i}^{*}-E\left[T_{i}^{*}\right]\right| \geq \varepsilon\right] \leq 4 e^{-\frac{1+o(1)}{6} \min \left\{\frac{\varepsilon^{2} \theta_{\varepsilon}^{2} M}{1-\theta_{\ell}}, \varepsilon \theta_{\ell}^{2} M\right\}} .
$$

12 The k-core Problem

A k-core of a graph is a largest subgraph with minimum degree at least k
(due to Bollobás).

Pittel, Spencer \& Wormald ('96):
For random graph $G(n, p)$ and

$$
\lambda_{k}=\min _{\rho>0} \frac{\rho}{Q(\rho, k-1)},
$$

where

$$
Q(\rho, k-1):=\operatorname{Pr}(\operatorname{Poi}(\rho) \geq k-1)=e^{-\rho} \sum_{l=k-1}^{\infty} \frac{\rho^{l}}{l!}
$$

If $k \geq 3$,

$$
\operatorname{Pr}[G(n, \lambda /(n-1)) \text { has a } k \text {-core }] \rightarrow \begin{cases}0 & \text { if } \lambda<\lambda_{k}-n^{-\delta} \\ 1 & \text { if } \lambda>\lambda_{k}+n^{-\delta}\end{cases}
$$

for any $\delta \in(0,1 / 2)$, and

$$
\begin{aligned}
\operatorname{Pr}[\text { either } \exists \text { no } k \text {-core or } \exists & \left.k \text {-core of size } \geq\left(1-n^{-\delta}\right) \lambda_{k}^{*} n\right] \\
& \rightarrow 1 .
\end{aligned}
$$

Recall,

$$
\lambda_{k}=\min _{\rho>0} \frac{\rho}{Q(\rho, k-1)} .
$$

(improving Łuczak's result).
C. Cooper (\geq '02): Simpler proof for

$$
\operatorname{Pr}[G(n, \lambda /(n-1)) \text { has a } k \text {-core }] \rightarrow \begin{cases}0 & \text { if } \lambda<(1-\varepsilon) \lambda_{k} \\ 1 & \text { if } \lambda>(1+\varepsilon) \lambda_{k} .\end{cases}
$$

(K) For Poisson Cloning Model $G_{P C}(n, p)$ and $k \geq 3$,

$$
\begin{gathered}
\operatorname{Pr}\left[G_{P C}(n, \lambda /(n-1)) \text { has a } k \text {-core }\right] \rightarrow \\
\begin{cases}0 & \text { if } \lambda_{k}-\lambda \gg n^{-1 / 2} \\
1 & \text { if } \lambda-\lambda_{k} \gg n^{-1 / 2},\end{cases}
\end{gathered}
$$

and

$$
\begin{aligned}
& \operatorname{Pr}[\text { either } \exists \text { no } k \text {-core or } \\
& \left.\quad \exists k \text {-core of size } \geq\left(1-(\omega(n) n)^{-1 / 2}\right) \lambda_{k}^{*} n\right]=1-o(1),
\end{aligned}
$$

for any $\omega(n) \rightarrow \infty$. Recall,

$$
\lambda_{k}=\min _{\rho>0} \frac{\rho}{Q(\rho, k-1)}
$$

We will be
solving the problem as well as generating $G_{P C}(n, p)$.
$($ Recall $p=\lambda /(n-1))$.
At step 0,
A vertex v is light if $d(v)<k$, or the number of v-clones is less than k.

It is heavy, otherwise.
Take a light clone w and
then choose the largest clone excluding w.

We will be
solving the problem as well as generating $G_{P C}(n, p)$.

In general, at step i,
A vertex v is light if
the number of unmatched v-clones is less than k.
It is heavy, otherwise.
Take a unmatched light clone w and then choose the largest unmatched clone except w.

- Parameters

Recall

$$
M(\theta)=\text { the number of matched clones at } \theta \lambda .
$$

For $v \in V$ and $0 \leq \theta \leq 1$, we define

$$
d_{v}(\theta)=\text { the number of } v \text {-clones less than } \theta \lambda \text {. }
$$

Let $L(\theta)$ be the number of light clones at $\theta \lambda$, and the number $H(\theta)$ of heavy clones at $\theta \lambda$ is denoted by

$$
H(\theta)=\sum_{v \in V} d_{v}(\theta) 1\left(d_{v}(\theta) \geq k\right) .
$$

If the number of light clones has been positive until $\theta \lambda$, then all clones counted in $H(\theta)$ is not matched until $\Lambda=\theta \lambda$, and hence

$$
L(\theta)=M_{\lambda}-M(\theta)-H(\theta) .
$$

Thus, the maximum θ such that $L(\theta)=0$ is the same as the maximum θ such that $M_{\lambda}-M(\theta)-H(\theta)=0$.

Lemma 12.1 Let

$$
Q(\rho, k)=\operatorname{Pr}[\operatorname{Poi}(\rho) \geq k] .
$$

Then
$\operatorname{Pr}\left[\max _{\theta: \theta_{1} \leq \theta \leq 1}|H(\theta)-Q(\theta \lambda, k-1) \theta \lambda n| \geq \Delta\right] \leq 2 e^{-\Omega\left(\min \left\{\Delta, \frac{\Delta^{2}}{\left(1-\theta_{1}\right) n}\right\}\right)}$.
Proof. First,

$$
E\left[d_{v}(\theta) 1\left(d_{v}(\theta) \geq k\right)\right]=e^{-\theta \lambda} \sum_{\ell \geq k} \ell \frac{(\theta \lambda)^{\ell}}{\ell!}=\theta \lambda e^{-\theta \lambda} \sum_{\ell \geq k} \frac{(\theta \lambda)^{(\ell-1)}}{(\ell-1)!}
$$

implies that

$$
E[H(\theta)]=Q(\theta \lambda, k-1) \theta \lambda n .
$$

Applying a generalized Chernoff bound, we obtain the desired inequality.

Corollary 12.2

$$
\begin{aligned}
& \operatorname{Pr}\left[\max _{\theta: \theta_{1} \leq \theta \leq 1}\left|M_{\lambda}-M(\theta)-H(\theta)-(\theta-Q(\theta \lambda, k-1)) \theta \lambda n\right| \geq \Delta\right] \\
& \leq 2 e^{-\Omega\left(\min \left\{\Delta, \frac{\Delta^{2}}{\left(1-\theta_{1}\right) n}\right\}\right)}
\end{aligned}
$$

Notice that, assuming $\theta>0, \theta=Q(\theta \lambda, k-1)$ if and only if

$$
\lambda=\frac{\theta \lambda}{Q(\theta \lambda, k-1)}
$$

This equation has a solution θ in the range $0<\theta \leq 1$ if and only if

$$
\lambda \geq \min _{\rho>0} \frac{\rho}{Q(\rho, k-1)}
$$

Notice that

$$
\begin{aligned}
\frac{d}{d \rho} \frac{\rho}{Q(\rho, k-1)} & =\frac{Q(\rho, k-1)-\rho P(\rho, k-2)}{Q^{2}(\rho, k-1)} \\
& =\frac{Q(\rho, k)-(k-2) P(\rho, k-1)}{Q^{2}(\rho, k-1)}
\end{aligned}
$$

and $Q(\rho, k)-(k-2) P(\rho, k-1)=-(k-2+O(\rho)) P(\rho, k-1)$ as $\rho \rightarrow 0$ and $Q(\rho, k)-(k-2) P(\rho, k-1) \rightarrow 1$ as $\rho \rightarrow \infty$. Let $\rho_{\text {min }}$ be the minimum ρ satisfying

$$
Q(\rho, k)-(k-2) P(\rho, k-1)=0
$$

Let $\rho_{\min }$ be the minimum ρ satisfying

$$
Q(\rho, k)-(k-2) P(\rho, k-1)=0
$$

For $\rho<k$, we know that

$$
\begin{aligned}
Q(\rho, k) & =\frac{\rho^{k-1}}{(k-1)!} e^{-\rho} \sum_{\ell \geq k} \frac{(k-1)!\rho^{\ell-k+1}}{\ell!} \\
& <P(\rho, k-1) \sum_{\ell \geq k} \frac{\rho^{\ell-k+1}}{k^{\ell-k+1}}=\frac{\rho P(\rho, k-1)}{k-\rho}
\end{aligned}
$$

in particular, $\rho \leq k-2$ yields $Q(\rho, k)<(k-2) P(\rho, k-1)$. Thus, $\rho_{\text {min }}>k-2$ and for $\rho \geq \rho_{\text {min }}$,

$$
\begin{aligned}
\frac{d}{d \rho}(Q(\rho, k)-(k-2) P(\rho, k-1)) & =(k-1) P(\rho, k-1)-(k-2) P(\rho, k-2) \\
& =(\rho-k+2) P(\rho, k-2)>0
\end{aligned}
$$

All together, we have

$$
\frac{d}{d \rho} \frac{\rho}{Q(\rho, k-1)}<0, \quad \text { for } \rho<\rho_{\min }
$$

and

$$
\frac{d}{d \rho} \frac{\rho}{Q(\rho, k-1)}>0, \quad \text { for } \rho>\rho_{\min }
$$

Theorem 12.3 Let θ_{T} be the minimum θ such that $L(\theta)=0$ for the first time, and θ_{λ} be the largest solution ≤ 1 of the equation

$$
\theta-Q(\theta \lambda, k-1)=0 .
$$

Then

$$
\operatorname{Pr}\left[\left|\theta_{T}-\theta_{\lambda}\right| \geq \sigma\right]=2 e^{-\Omega\left(\sigma^{2} n\right)} .
$$

Proof. Notice that θ_{λ} is the largest $\theta<1$ such that

$$
\frac{\theta \lambda}{Q(\theta \lambda, k-1)}=\lambda .
$$

It is easy to check that

$$
\theta-Q(\theta \lambda, k-1)=\Omega\left(\theta-\theta_{\lambda}\right) \text { for } \theta>\theta_{\lambda},
$$

and there is a constant $\theta_{1}>0$

$$
\theta-Q(\theta \lambda, k-1)=-\Omega\left(\theta_{\lambda}-\theta\right) \text { for } \theta_{\lambda}-\theta_{1} \leq \theta<\theta_{\lambda} .
$$

Thus,

$$
\begin{aligned}
\operatorname{Pr}\left[\theta_{T} \geq \theta_{\varepsilon}+\sigma\right] & =\operatorname{Pr}\left[\min _{\theta \geq \theta_{\lambda}+\sigma} L(\theta)=0\right] \\
& \leq \operatorname{Pr}\left[\min _{\theta \geq \theta_{\lambda}+\sigma} M_{\lambda}-M(\theta)-H(\theta) \leq 0\right] \\
& \leq 2 e^{-\Omega\left(\sigma^{2} n\right)},
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Pr}\left[\theta_{T}<\theta_{\varepsilon}-\sigma\right] & =\operatorname{Pr}\left[\min _{\theta \geq \theta_{\lambda}-\sigma} L(\theta)>0\right] \\
& \leq \operatorname{Pr}\left[\min _{\theta \geq \theta_{\lambda}-\sigma} M_{\lambda}-M(\theta)-H(\theta)>0\right] \\
& \leq 2 e^{-\Omega\left(\min \left\{\theta_{1}^{2} n, \sigma^{2} n\right\}\right)}=2 e^{-\Omega\left(\sigma^{2} n\right)} .
\end{aligned}
$$

Corollary 12.4

$$
\operatorname{Pr}\left[\left|V_{C}\right|-Q\left(\theta_{\lambda} \lambda, k\right) n \mid \geq \sigma n\right]=2 e^{-\Omega\left(\sigma^{2} n\right)} .
$$

13 The Emergence Of the Giant Component

Theorem 13.1 Supercritical Phase: Let $\lambda:=\lambda(n, p)=1+\varepsilon$ with $n^{-1 / 3} \ll \varepsilon \ll 1, \mu:=\left(1-\theta_{\varepsilon}\right) \lambda$ and $1 \ll \alpha \ll\left(\varepsilon^{3} n\right)^{1 / 2}$. Then, with probability $1-e^{-\Omega\left(\alpha^{2}\right)}$, $G_{P C}(n, p)$ may be decomposed by three vertex disjoint graphs C, S and G, where C is connected and

$$
\theta_{\varepsilon} n-\alpha(n / \varepsilon)^{1 / 2} \leq|C| \leq \theta_{\varepsilon} n+\alpha(n / \varepsilon)^{1 / 2}
$$

and $|S| \leq \frac{\alpha^{2}}{\varepsilon^{2}}$, and G has the same distribution as $G_{P C}\left(n^{*}, p^{*}\right)$ for some n^{*} and p^{*} satisfying

$$
\left(1-\theta_{\varepsilon}\right) n-\alpha(n / \varepsilon)^{1 / 2} \leq n^{*} \leq\left(1-\theta_{\varepsilon}\right) n+\alpha(n / \varepsilon)^{1 / 2}
$$

and

$$
\mu-\alpha(\varepsilon n)^{-1 / 2} \leq \lambda\left(n^{*}, p^{*}\right) \leq \mu+\alpha(\varepsilon n)^{-1 / 2}
$$

Subcritical Phase: Suppose $\lambda:=\lambda(n, p)=1-\varepsilon$ with
$n^{-1 / 3} \ll \varepsilon \ll 1$. Then, the size $\ell_{1}^{P C}(n, p)$ of the largest component of $G_{P C}(n, p)$ satisfies

$$
\operatorname{Pr}\left[\ell_{1}^{P C}(n, p) \geq \frac{\log \left(\varepsilon^{3} n\right)-2.5 \log \log \left(\varepsilon^{3} n\right)+c}{-(\varepsilon+\log (1-\varepsilon))}\right] \leq 2 e^{-\Omega(c)}
$$

and

$$
\operatorname{Pr}\left[\ell_{1}^{P C}(n, p) \leq \frac{\log \left(\varepsilon^{3} n\right)-2.5 \log \log \left(\varepsilon^{3} n\right)-c}{-(\varepsilon+\log (1-\varepsilon))}\right] \leq 2 e^{-e^{\Omega(c)}}
$$

for any positive constant $c>0$.
Inside Window: Suppose $\lambda:=\lambda(n, p)=1+\varepsilon$ with $|\varepsilon|=O\left(n^{1 / 3}\right)$. Then, whp,

$$
\ell_{1}^{P C}(n, p)=\Theta\left(n^{2 / 3}\right)
$$

(All constants in $\Omega(\cdot)$'s do not depend on any of ε, α and c.)

Proof. (Supercritical Region) Let

$$
\theta_{1}=\frac{\alpha^{2}}{\theta_{\varepsilon}^{2} n}, \quad \theta_{2}=\theta_{\varepsilon}-\alpha\left(\theta_{\varepsilon} n\right)^{-1 / 2},
$$

and $\theta_{3}=\theta_{\varepsilon}+\alpha\left(\theta_{\varepsilon} n\right)^{-1 / 2}$. (Recall θ_{ε} is the larger solution of the equation $1-\theta-e^{-(1+\varepsilon) \theta}=0$.)
Let $H(\theta)$ be the number of clones of vertices that have no clones larger than or equal to $\theta \lambda$, i.e.,

$$
H(\theta)=\sum_{v \in V} d_{v}(\theta) 1\left(d_{v}-d_{v}(\theta)=0\right),
$$

and let

$$
B(\theta)=M_{\lambda}-M(\theta)-H(\theta) .
$$

Denoted by $F(\theta)$ is the number of clones activated by free steps. Then the number $A(\theta)$ of active clones at $\theta \lambda$ satisfies

$$
B(\theta) \leq A(\theta) \leq B(\theta)+F(\theta) .
$$

We will show that each of the following events occur with probability $1-e^{-\Omega\left(\alpha^{2}\right)}$:
(i) For $\rho=\alpha^{2}\left(\theta_{\varepsilon} n\right)^{-1}$, we have $F\left(1-\theta_{1}\right) \leq M\left(V_{\rho}\right)$.
(ii) For θ in the range $\theta_{1} \leq \theta \leq \theta_{2}$, all $B(1-\theta)$ are positive.
(iii) For some θ between θ_{2} and $\theta_{3}, \AA(1-\theta)=0$.

The proof basically follows from
(1) $E[B(1-\theta)] \approx \lambda n-\left(1-(1-\theta)^{2}\right) \lambda n-(1-\theta) \lambda e^{-\theta \lambda} n$

$$
=\left(1-\theta-e^{-\theta \lambda}\right)(1-\theta) \lambda n
$$

(2) The random variable $B(1-\theta)=M_{\lambda}-M(1-\theta)-H(1-\theta)$ is highly concentrated near $\left(1-\theta-e^{-\theta \lambda}\right)(1-\theta) \lambda n$.

14 Random Graph vs. Random Regular graph

An attempt to study RRG by means of RG or vice versa:
$G_{d}=$ random d-regular graph,
$G=G(n,(1-o(1)) d / n), H=G(n, o(d / n))$ independent random graphs

Conjecture For $\log n \ll d \leq n / 2$, there is a coupling on $\left(G_{d}, G, H\right)$ such that

$$
\operatorname{Pr}\left[G \subseteq G_{d} \subseteq G \cup H\right]=1-o(1)
$$

If true, k-connectivity, Hamiltonicity, independence number, (list)chromatic number, the second largest eigenvalue, ... (cf:
Copper, Frieze \& Reed
Krivelevich, Sudakov, Vu \& Wormald)

Partial Result:
Theorem ($\mathrm{K} \& \mathrm{Vu}$) For $d=n^{\delta}$ with $0<\delta<1 / 3$, there is a coupling on $\left(G_{d}, G, H\right)$ and a constant $c=c(\delta)>0$ such that

$$
\operatorname{Pr}\left[G \subseteq G_{d}, \Delta\left(G_{d} \backslash(G \cup H)\right)<c\right]=1-o(1)
$$

where $\Delta(F)$ is the maximum degree of F.

Generating random d-regular graphs

- List all regular graphs and choose one randomly
- Use the configuration model

Recall,

$$
\operatorname{Pr}[\text { Simple }] \sim \exp \left(-\frac{d^{2}-1}{4}\right) .
$$

- An algorithm of Steger and Wormald to generate a SIMPLE perfect matching in the configuration model
(1) We pick pairs of clones one by one.
(2) We never pick an edge which creates a loop. Namely, we never pick pairs of clones of the same vertex.
(3) Assume that a bunch of edges are picked. In the next step, we only pick a pair of clones that does not create a parallel edge.

Such a pair that does not create a loop is called suitable.

- An algorithm of Steger and Wormald to generate a SIMPLE perfect matching in the configuration model
(I) Start with a set M of $n d$ clones ($n d$ even) partitioned into n groups of size d.
(II) Choose two unmatched clones u, v uniformly at random. If the pair u, v is suitable, match the pair. If not, u, v remain unmatched. Repeat until no suitable pair exists.
(III) If all clones are matched, output it. Otherwise return to step (I).
- An algorithm of Steger and Wormald to generate a SIMPLE perfect matching in the configuration model
(I) Start with a set M of $n d$ clones ($n d$ even) partitioned into n groups of size d.
(II) Choose two unmatched clones u, v uniformly at random. If the pair u, v is suitable, match the pair. If not, u, v remain unmatched. Repeat until no suitable pair exists.
(III) If all clones are matched, output it. Otherwise the algorithm fails.

Q1: What is the probability of 'fail'?
Q2: If it succeeds, is it uniform (among all simple perfect matching)?

An algorithm of Steger and Wormald:

Does it generate the (uniform) random regular graph?

An algorithm of Steger and Wormald:

Does it generate the (uniform) random regular graph?

No! But, almost.

Theorem (Steger \& Wormald) If $d=o\left(n^{1 / 28}\right)$, then for every d-regular graph G on n vertices

$$
\operatorname{Pr}[\text { the algorithm yields } G]=(1+o(1)) p_{u} .
$$

Theorem ($\mathrm{K} \& \mathrm{Vu}$)
If $d=o\left(n^{1 / 3} / \log ^{1 / 2} n\right)$, then for every d-regular graph G on n vertices
$\operatorname{Pr}[$ the algorithm yields $G]=(1+o(1)) p_{u}$.
$G_{d}=$ random d-regular graph,
$G=G(n,(1-o(1)) d / n)$ independent random graphs
Theorem For $d=n^{\delta}$ with $0<\delta<1 / 3$, there is a coupling on $\left(G_{d}, G\right)$ such that

$$
\operatorname{Pr}\left[G \subseteq G_{d}\right]=1-o(1)
$$

Proof idea. We keep choosing uniform random edge $\{u, v\}$ of K_{n} with REPITITION and regard u, v as their clones $(u, i),(v, j)$, where (u, i) and (v, j) are chosen uniformly at random among all unmatched clones of u and v, respectively.
$G_{d}=$ random d-regular graph,
$G=G(n,(1-o(1)) d / n)$ independent random graphs
Theorem For $d=n^{\delta}$ with $0<\delta<1 / 3$, there is a coupling on $\left(G_{d}, G\right)$ such that

$$
\operatorname{Pr}\left[G \subseteq G_{d}\right]=1-o(1)
$$

Proof idea. We keep choosing uniform random edge $\{u, v\}$ of K_{n} with REPITITION and regard u, v as their clones $(u, i),(v, j)$, where (u, i) and (v, j) are chosen uniformly at random among all unmatched clones of u and v, respectively.

This does not work!
Why?

