
10 Poisson Cloning Models

Theorem (K) Supercritical region: Let p = 1+ε
n with ε ≫ n−1/3,

and 1 ≪ α ≪ (ε3n)1/2. Then

Pr
[

|W (n, p) − θεn| ≥ α
(n

ε

)1/2]

≤ 2e−Ω(α2).

 Luczak, 1990: With probability 1 − O((ε3n)−1/9),

|W (n, p) − θεn| ≤ 0.2n2/3.

(Notice that (n
ε )1/2 ≪ n2/3. )
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Theorem (K) Subcritical region: Suppose λ = 1 − ε with

n−1/3 ≪ ε ≪ 1, then,

Pr
[

W (n, p) ≥
log(ε3n) − 2.5 log log(ε3n) + c

−(ε + log(1 − ε))

]

≤ 2e−Ω(c),

and

Pr
[

W (n, p) ≤
log(ε3n) − 2.5 log log(ε3n) − c

−(ε + log(1 − ε))

]

≤ 2e−eΩ(c)

,

for a positive constant c > 0.

improving

(2 − α)
log(ε3n)

ε2
≤ W (n, p) ≤ (2 + α)

log(ε3n)

ε2
,

for α ≫ max{ε, log−1/2(ε3n)}.
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We may also define the Poisson Cloning Models for

Random k-uniform hypergraphs

Random k-SAT Problems

Random Directed Graphs
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Similar analyses are possible using PCM and

COLA for

• The k-core problem for hypergraph (Pittel-Spencer-Wormald, ...)

• Structures of the giant component:

e.g. # of vertices of degree i ≥ 2

( Luczak, Pittel, ...)

• Strong component of the random directed graph

(Karp, ...)

• Pure literal rule for random k-SAT problems

(Broder-Frieze-Upfal, ...)
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And more

• Unit clause algorithm for random k-SAT problems (Chao-Franco,

...)

• Karp-Sipser Algorithm

(Karp-Sipser, Aronson-Frieze-Pittel, ...)

• Giant Component of

H ∪ G(n, p)

for a fixed graph H. (K-Spencer)

301



The k-core Problem

A k-core of a graph is a largest subgraph

with minimum degree at least k

(due to Bollobás).

Pittel, Spencer & Wormald (’96):

For random graph G(n, p) and

λk = min
ρ>0

ρ

P (ρ, k − 1)
,

where

P (ρ, k − 1) := Pr
(

Poi(ρ) ≥ k − 1
)

= e−ρ
∞
∑

l=k−1

ρl

l!
,
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If k ≥ 3,

Pr
[

G(n, λ/(n − 1)) has a k-core
]

→







0 if λ < λ
k
− n−δ

1 if λ > λ
k

+ n−δ,

for any δ ∈ (0, 1/2), and

Pr
[

either ∃ no k-core or ∃ k-core of size ≥ (1 − n−δ)λ∗
k
n
]

→ 1.

Recall,

λk = min
ρ>0

ρ

P (ρ, k − 1)
.

(improving  Luczak’s result).
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C. Cooper (≥ ’02): Simpler proof for

Pr
[

G(n, λ/(n − 1)) has a k-core
]

→







0 if λ < (1 − ε)λ
k

1 if λ > (1 + ε)λ
k
.
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(K) For Poisson Cloning Model GPC(n, p) and k ≥ 3,

Pr
[

GPC(n, λ/(n − 1)) has a k-core
]

→







0 if λ
k
− λ ≫ n−1/2

1 if λ − λ
k
≫ n−1/2,

and

Pr
[

either ∃ no k-core or

∃ k-core of size ≥ (1 − (ω(n)n)−1/2)λ∗
kn

]

= 1 − o(1),

for any ω(n) → ∞. Recall,

λk = min
ρ>0

ρ

P (ρ, k − 1)
.
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• Poisson Cloning Model GPC(n, p): Definition

Take i.i.d Poisson random variables d(v)’s, v ∈ V , with mean

λ = p(n − 1),

then, for each v ∈ V , take d(v) copies, or clones, of v.

If
∑

v∈V d(v) is even,

generate a (uniform) random

perfect matching on the set of all clones

and then contract clones of the same vertex.

If
∑

v∈V d(v) is odd, generate a perfect match excluding a clone

and a loop. .
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• Equivalent Definition

Take a Poisson λn random variable Mλ and Mλ unlabelled clones.

Then, independently label each clone by v chosen uniformly at

random among all vertices {1, ..., n}.

If M is even,

generate a (uniform) random

perfect matching on the set of all clones

and then contract clones of the same vertex.

If M is odd, generate a perfect match excluding a clone and a loop.

.
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• Or, take a Poisson λn random variable Mλ and Mλ unlabelled

clones. Assume that these clones are ordered. Take the first two

clones and match them. Then, label those two clones uniformly at

random.

If M is even,

this will generate a (uniform) random

perfect matching as well as a valid labelling.

If M is odd, ... .
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G(n, p) vs. GPC(n, p)

Theorem (K) If pn = O(1), then there are positive constants c1

and c2 so that for any collection G of SIMPLE graphs

Pr[G(n, p) ∈ G] ≥ c1 Pr[GPC(n, p) ∈ G]

and

Pr[G(n, p) ∈ G] ≤ c2

((

Pr[GPC(n, p) ∈ G]
)1/2

+ e−n
)

.

In particular,

Pr[G(n, p) ∈ G] → 0 iff Pr[GPC(n, p) ∈ G] → 0, and

Pr[G(n, p) ∈ G] → 1 iff Pr[GPC(n, p) ∈ G] → 1.
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Proof. For λ = p(n − 1) and a fixed simple graph G with m edges,

Pr[GPC(n, p) = G]

= Pr[Mλ = 2m] · (m 2
n

1
n )((m − 1) 2

n
1
n ) · · · (1 2

n
1
n )

=
e−λn(λn)2m

(2m)!

2mm!

n2m
.

Using

(2m)! = (1 + O( 1
m ))(4πm)1/2( 2m

e )2m

= (1 + O( 1
m ))(πm)−1/222m

(

(2πm)1/2(m
e )m

)2

= (1 + O( 1
m ))(πm)−1/222m(m!)2
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Using

(2m)! = (1 + O( 1
m ))(πm)−1/222m(m!)2

we have

Pr[GPC(n, p) = G] =
e−λn(λn)2m

(2m)!

2mm!

n2m

= ( λ
n )me−λn/2+O( 1

m ) (πm)1/2e−λn/2(λn
2 )m

m!

On the other hand, λ = p(n − 1) yields,

Pr[G(n, p) = G] = pm(1 − p)(
n
2)−m

= ( λ
n−1 )me−λn/2+pm−p2n2/4+O(p2m+p3n2).
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Take the smallest ℓ1 , ℓ2 > 0 such that, if m ≤ λn/2 − ℓ1 or

m ≥ λn/2 + ℓ2, then

(2πλn)1/2e−λn/2(λn
2 )m

m!
≤ Pr[GPC(n, p) ∈ G]1/2 + e−n.

It is easy to check that ℓ1 , ℓ2 ≤ cn for a constant c independent of

Pr[GPC(n, p) ∈ G]. We consider

Pr[G(n, p) ∈ G] =
∑

G∈G
−ℓ1<|G|−λn/2<ℓ2

Pr[G(n, p) = G]

+
∑

G∈G
|G|≤λn/2−ℓ1

Pr[G(n, p) = G]

+
∑

G∈G
|G|≥λn/2+ℓ1

Pr[G(n, p) = G].
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First,

Pr[GPC(n, p) ∈ G]

≥
∑

G∈G
−ℓ1<|G|−λn/2<ℓ

2

Pr[GPC(n, p) = G]

≥ c−1
1

∑

G∈G
−ℓ1<|G|−λn/2<ℓ2

Pr[G(n, p) = G] Pr[GPC(n, p) ∈ G]1/2

gives
∑

G∈G
−ℓ1<|G|−λn/2<ℓ2

Pr[G(n, p) = G] ≤ c1 Pr[GPC(n, p) ∈ G]1/2.
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Second, by p
(

n
2

)

= λn/2, it is easy to check that

∑

G∈G
|G|≤λn/2−ℓ1

Pr[G(n, p) = G] ≤
∑

ℓ≤λn/2−ℓ1

Pr
[

Bin
(

(

n

2

)

, p
)

= ℓ
]

≤ c2

∑

ℓ≤λn/2−ℓ1

Pr[Poi(λn/2) = ℓ]

≤ (c2 + o(1))(πλn)1/2 Pr[Poi(λn/2) = λn/2 − ℓ1 ].

Ex 1. Pr[Bin(m, p) = ℓ] = O
(

eO(p2m) Pr[Poi(pm)] = ℓ]
)

2a.
∑

ℓ≤λn/2−ℓ1

Pr[Poi(λn/2) = ℓ]

≤ (1 + o(1))(πλn)1/2 Pr[Poi(λn/2) = λn/2 − ℓ1 ]
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Similarly,

∑

G∈G
|G|≥λn/2+ℓ2

Pr[G(n, p) = G] ≤
∑

ℓ≥λn/2+ℓ2

Pr
[

Bin
(

(

n

2

)

, p
)

= ℓ
]

≤ c3

∑

ℓ≥λn/2+ℓ2

Pr[Poi(λn/2) = ℓ]

Ex.

2b.
∑

ℓ≥λn/2+ℓ2

Pr[Poi(λn/2) = ℓ]

≤ (1 + o(1))(πλn)1/2 Pr[Poi(λn/2) = λn/2 + ℓ2 ]
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11 Cut-Off Line Lemma

For θ in the range 0 ≤ θ ≤ 1, let Λ(θ) be the cut-off value when

(1 − θ2)λn or more clones are matched for the first time.

Conversely, let M(θ) be the number of matched clones until the

cut-off line reaches θλ.

Lemma 11.1 (Cut-off Line Lemma) For θ1 < 1 uniformly bounded

below from 0 and 0 < ∆ ≤ n,

Pr
[

max
θ:θ1≤θ≤1

|Λ(θ) − θλ| ≥ ∆
n

]

≤ 2e
−Ω(min{∆, ∆2

(1−θ1 )n})
,

and

Pr
[

max
θ:θ1≤θ≤1

|M(θ) − (1 − θ2)λn| ≥ ∆
]

≤ 2e
−Ω(min{∆, ∆2

(1−θ1 )n})
.
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Conditioned on Mλ = M , that is, there are M clones initially.

Then,

E[Λ1] =
(

1 −
1

M − 1

)

λ =
(

1 −
1

M − 1

)

Λ0

since we took the largest number among M − 1 i.i.d uniform

random numbers from 0 to λ. Similarly, in expectation,

E[Λi+1|Λi] =
(

1 −
1

M − 2i − 1

)

Λi

Precisely,

Λi+1 = (1 − Ti)Λi = λ
i

∏

j=0

(

1 − Tj

)

,

where Ti are mutually independent and

Ti = min. of M − 2i − 1 uniform random numbers in [0, 1],

i.e,

Pr[Ti ≥ t] = (1 − t)M−2i−1 ≈ e−(M−2i−1)t.
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• Why M(θ) = (1 − θ2)λn?

At Λ = θλ, or simply at θλ, (that is, when the cut-off line reaches

θλ),

∆(θλ) ≈
(

1 −
1

λn − M(θ) − 1

)

θλ − θλ

implies

∆θ ≈
−θ

λn − M(θ) − 1
.

Clearly, ∆N(θ) = 2. Hence,

∆M

∆θ
≈

−2(λn − M(θ) − 1)

θ
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Lemma 11.2 Given Mλ = M , let Tj’s be mutually independent,

j = M, M − 1, ..., M − 2ℓ with N − 2ℓ ≫ 1. Then, denoting

θi = (1 − 2i/M)1/2, we have, for ε ≤ 0.1,

Pr
[

max
i:1≤i≤ℓ

∣

∣

∣

M−2i
∏

j=M
2|(M−j)

(

1−Tj

)

−θi

∣

∣

∣
≥ ε

]

≤ 10e
− 1+o(1)

7 min{εθ2

ℓ
M,

ε2 θ2
ℓ

M

1−θ
ℓ

}
.

In particular, if θ
ℓ

= Ω(1), then

Pr
[

max
i:1≤i≤ℓ

∣

∣

∣

M−2i
∏

j=M
2|(M−j)

(

1 − Tj

)

− θi

∣

∣

∣
≥ ε

]

≤ 2e
−Ω(min{εM, ε2M

1−θ
ℓ
})

.

Recall

Ti = min. of M − 2i − 1 uniform random numbers in [0, 1],

i.e,

Pr[Ti ≥ t] = (1 − t)M−2i−1 ≈ e−(M−2i−1)t.
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Proof. Proof of Lemma 11.2 As

θ2

i
M

∏

j=M
2|(M−j)

(1 − Tj) = exp
(

θ2

i
M

∑

j=M
2|(M−j)

log(1 − Tj)
)

,

we show a high concentration for log(1 − Tj). Since

Pr[∃ j, Tj ≥ 1/2] ≤

θ2

ℓ
M

∑

j=M

2−j+1 ≤ 2−θ2

ℓ
M+2,

and

−x − x2 ≤ log(1 − x) ≤ −x ∀x : 0 ≤ x ≤ 1/2,

we have, with probability at least 1 − 2−θk

ℓ
M+2,

−Tj − T 2
j ≤ log(1 − Tj) ≤ −Tj , for all j.
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Thus, for Sj = Tj − T 2
j , and

T ∗
i :=

θ2

i
M

∑

j=M
2|(M−j)

Tj , and S∗
i :=

θ2

i
M

∑

j=N
2|(M−j)

Sj ,

it is enough to show that both of E[S∗
i ] and E[T ∗

i ] are very close to

θi and S∗
i , T ∗

i are highly concentrated near their means. That is, it

is enough to show that

Pr[max
i

|S∗
i − E[S∗

i ]| ≥ ε] ≤ 4e
−

1+o(1)
6 min{

ε2 θ2
ℓ M

1−θℓ
, εθ2

ℓ
M}

,

and

Pr[max
i

|T ∗
i − E[T ∗

i ]| ≥ ε] ≤ 4e
− 1+o(1)

6 min{
ε2 θ2

ℓ M

1−θℓ
, εθ2

ℓ
M}

.
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12 The k-core Problem

A k-core of a graph is a largest subgraph

with minimum degree at least k

(due to Bollobás).

Pittel, Spencer & Wormald (’96):

For random graph G(n, p) and

λk = min
ρ>0

ρ

Q(ρ, k − 1)
,

where

Q(ρ, k − 1) := Pr
(

Poi(ρ) ≥ k − 1
)

= e−ρ
∞
∑

l=k−1

ρl

l!
,
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If k ≥ 3,

Pr
[

G(n, λ/(n − 1)) has a k-core
]

→







0 if λ < λ
k
− n−δ

1 if λ > λ
k

+ n−δ,

for any δ ∈ (0, 1/2), and

Pr
[

either ∃ no k-core or ∃ k-core of size ≥ (1 − n−δ)λ∗
k
n
]

→ 1.

Recall,

λk = min
ρ>0

ρ

Q(ρ, k − 1)
.

(improving  Luczak’s result).
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C. Cooper (≥ ’02): Simpler proof for

Pr
[

G(n, λ/(n − 1)) has a k-core
]

→







0 if λ < (1 − ε)λ
k

1 if λ > (1 + ε)λ
k
.
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(K) For Poisson Cloning Model GPC(n, p) and k ≥ 3,

Pr
[

GPC(n, λ/(n − 1)) has a k-core
]

→







0 if λ
k
− λ ≫ n−1/2

1 if λ − λ
k
≫ n−1/2,

and

Pr
[

either ∃ no k-core or

∃ k-core of size ≥ (1 − (ω(n)n)−1/2)λ∗
kn

]

= 1 − o(1),

for any ω(n) → ∞. Recall,

λk = min
ρ>0

ρ

Q(ρ, k − 1)
.
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We will be

solving the problem as well as

generating GPC(n, p).

(Recall p = λ/(n − 1)).

At step 0,

A vertex v is light if d(v) < k,

or the number of v-clones is less than k.

It is heavy, otherwise.

Take a light clone w and

then choose the largest clone excluding w.
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We will be

solving the problem as well as

generating GPC(n, p).

In general, at step i,

A vertex v is light if

the number of unmatched v-clones is less than k.

It is heavy, otherwise.

Take a unmatched light clone w and

then choose the largest unmatched clone except w.
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• Parameters

Recall
M(θ)= the number of matched clones at θλ.

For v ∈ V and 0 ≤ θ ≤ 1, we define

dv(θ) = the number of v-clones less than θλ.

Let L(θ) be the number of light clones at θλ, and the number H(θ)

of heavy clones at θλ is denoted by

H(θ) =
∑

v∈V

dv(θ)1(dv(θ) ≥ k).

If the number of light clones has been positive until θλ, then all

clones counted in H(θ) is not matched until Λ = θλ, and hence

L(θ) = Mλ − M(θ) − H(θ).

Thus, the maximum θ such that L(θ) = 0 is the same as the

maximum θ such that Mλ − M(θ) − H(θ) = 0.
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Lemma 12.1 Let

Q(ρ, k) = Pr[Poi(ρ) ≥ k].

Then

Pr
[

max
θ:θ1≤θ≤1

∣

∣

∣
H(θ) −Q(θλ, k − 1)θλn

∣

∣

∣
≥ ∆

]

≤ 2e
−Ω(min{∆, ∆2

(1−θ1 )n})
.

Proof. First,

E[dv(θ)1(dv(θ) ≥ k)] = e−θλ
∑

ℓ≥k

ℓ
(θλ)ℓ

ℓ!
= θλe−θλ

∑

ℓ≥k

(θλ)(ℓ−1)

(ℓ − 1)!

implies that

E[H(θ)] = Q(θλ, k − 1)θλn.

Applying a generalized Chernoff bound, we obtain the desired

inequality.
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Corollary 12.2

Pr
[

max
θ:θ1≤θ≤1

∣

∣

∣
Mλ − M(θ) − H(θ) −

(

θ − Q(θλ, k − 1)
)

θλn
∣

∣

∣
≥ ∆

]

≤ 2e
−Ω(min{∆, ∆2

(1−θ1 )n})
.

Notice that, assuming θ > 0, θ = Q(θλ, k − 1) if and only if

λ =
θλ

Q(θλ, k − 1)
.

This equation has a solution θ in the range 0 < θ ≤ 1 if and only if

λ ≥ min
ρ>0

ρ

Q(ρ, k − 1)
.
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Notice that

d

dρ

ρ

Q(ρ, k − 1)
=

Q(ρ, k − 1) − ρP (ρ, k − 2)

Q2(ρ, k − 1)

=
Q(ρ, k) − (k − 2)P (ρ, k − 1)

Q2(ρ, k − 1)
,

and Q(ρ, k) − (k − 2)P (ρ, k − 1) = −(k − 2 + O(ρ))P (ρ, k − 1) as

ρ → 0 and Q(ρ, k) − (k − 2)P (ρ, k − 1) → 1 as ρ → ∞. Let ρmin be

the minimum ρ satisfying

Q(ρ, k) − (k − 2)P (ρ, k − 1) = 0.
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Let ρmin be the minimum ρ satisfying

Q(ρ, k) − (k − 2)P (ρ, k − 1) = 0.

For ρ < k, we know that

Q(ρ, k) =
ρk−1

(k − 1)!
e−ρ

∑

ℓ≥k

(k − 1)!ρℓ−k+1

ℓ!

< P (ρ, k − 1)
∑

ℓ≥k

ρℓ−k+1

kℓ−k+1
=

ρP (ρ, k − 1)

k − ρ
,

in particular, ρ ≤ k − 2 yields Q(ρ, k) < (k − 2)P (ρ, k − 1). Thus,

ρmin > k − 2 and for ρ ≥ ρmin,

d

dρ

(

Q(ρ, k)−(k−2)P (ρ, k−1)
)

= (k−1)P (ρ, k−1)−(k−2)P (ρ, k−2)

= (ρ − k + 2)P (ρ, k − 2) > 0.
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All together, we have

d

dρ

ρ

Q(ρ, k − 1)
< 0, for ρ < ρmin,

and
d

dρ

ρ

Q(ρ, k − 1)
> 0, for ρ > ρmin.
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Theorem 12.3 Let θT be the minimum θ such that L(θ) = 0 for

the first time, and θ
λ

be the largest solution ≤ 1 of the equation

θ − Q(θλ, k − 1) = 0.

Then

Pr[|θT − θ
λ
| ≥ σ] = 2e−Ω(σ2n).

Proof. Notice that θ
λ

is the largest θ < 1 such that

θλ

Q(θλ, k − 1)
= λ.

It is easy to check that

θ − Q(θλ, k − 1) = Ω(θ − θ
λ
) for θ > θ

λ
,

and there is a constant θ1 > 0

θ − Q(θλ, k − 1) = −Ω(θ
λ
− θ) for θ

λ
− θ1 ≤ θ < θ

λ
.
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Thus,

Pr[θT ≥ θε + σ] = Pr[ min
θ≥θ

λ
+σ

L(θ) = 0]

≤ Pr[ min
θ≥θ

λ
+σ

Mλ − M(θ) − H(θ) ≤ 0]

≤ 2e−Ω(σ2n),

and

Pr[θT < θε − σ] = Pr[ min
θ≥θ

λ
−σ

L(θ) > 0]

≤ Pr[ min
θ≥θ

λ
−σ

Mλ − M(θ) − H(θ) > 0]

≤ 2e−Ω(min{θ2

1
n,σ2n}) = 2e−Ω(σ2n).

�
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Corollary 12.4

Pr
[
∣

∣

∣
|VC | − Q(θ

λ
λ, k)n

∣

∣

∣
≥ σn

]

= 2e−Ω(σ2n).
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13 The Emergence Of the Giant

Component

Theorem 13.1 Supercritical Phase: Let λ := λ(n, p) = 1 + ε with

n−1/3 ≪ ε ≪ 1, µ := (1 − θε)λ and 1 ≪ α ≪ (ε3n)1/2. Then, with

probability 1 − e−Ω(α2), GPC(n, p) may be decomposed by three

vertex disjoint graphs C, S and G, where C is connected and

θεn − α(n/ε)1/2 ≤ |C| ≤ θεn + α(n/ε)1/2,

and |S| ≤ α2

ε2 , and G has the same distribution as GPC(n∗, p∗) for

some n∗ and p∗ satisfying

(1 − θε)n − α(n/ε)1/2 ≤ n∗ ≤ (1 − θε)n + α(n/ε)1/2,

and

µ − α(εn)−1/2 ≤ λ(n∗, p∗) ≤ µ + α(εn)−1/2.
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Subcritical Phase: Suppose λ := λ(n, p) = 1 − ε with

n−1/3 ≪ ε ≪ 1. Then, the size ℓPC
1 (n, p) of the largest component

of GPC(n, p) satisfies

Pr
[

ℓPC
1 (n, p) ≥

log(ε3n) − 2.5 log log(ε3n) + c

−(ε + log(1 − ε))

]

≤ 2e−Ω(c),

and

Pr
[

ℓPC
1 (n, p) ≤

log(ε3n) − 2.5 log log(ε3n) − c

−(ε + log(1 − ε))

]

≤ 2e−eΩ(c)

,

for any positive constant c > 0.

Inside Window: Suppose λ := λ(n, p) = 1 + ε with |ε| = O(n1/3).

Then, whp,

ℓPC
1 (n, p) = Θ(n2/3).

(All constants in Ω(·)’s do not depend on any of ε, α and c.)
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Proof. (Supercritical Region) Let

θ1 =
α2

θ2
εn

, θ2 = θε − α(θεn)−1/2,

and θ3 = θε + α(θεn)−1/2. (Recall θε is the larger solution of the

equation 1 − θ − e−(1+ε)θ = 0.)

Let H(θ) be the number of clones of vertices that have no clones

larger than or equal to θλ, i.e.,

H(θ) =
∑

v∈V

dv(θ)1(dv − dv(θ) = 0),

and let

B(θ) = Mλ − M(θ) − H(θ).

Denoted by F (θ) is the number of clones activated by free steps.

Then the number A(θ) of active clones at θλ satisfies

B(θ) ≤ A(θ) ≤ B(θ) + F (θ).
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We will show that each of the following events occur with

probability 1 − e−Ω(α2):

(i) For ρ = α2(θεn)−1, we have F (1 − θ1) ≤ M(Vρ).

(ii) For θ in the range θ1 ≤ θ ≤ θ2 , all B(1 − θ) are positive.

(iii) For some θ between θ2 and θ3 , Å(1 − θ) = 0.

The proof basically follows from

(1) E[B(1 − θ)] ≈ λn − (1 − (1 − θ)2)λn − (1 − θ)λe−θλn

= (1 − θ − e−θλ)(1 − θ)λn.

(2) The random variable B(1 − θ) = Mλ − M(1 − θ) − H(1 − θ) is

highly concentrated near (1 − θ − e−θλ)(1 − θ)λn.
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14 Random Graph vs. Random Regular

graph

An attempt to study RRG by means of RG or vice versa:

Gd =random d-regular graph,

G = G(n, (1 − o(1))d/n), H = G(n, o(d/n)) independent random

graphs

Conjecture For log n ≪ d ≤ n/2, there is a coupling on (Gd, G, H)

such that

Pr[G ⊆ Gd ⊆ G ∪ H] = 1 − o(1).

If true, k-connectivity, Hamiltonicity, independence number,

(list)chromatic number, the second largest eigenvalue, ... (cf:

Copper, Frieze & Reed

Krivelevich, Sudakov, Vu & Wormald)
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Partial Result:

Theorem (K & Vu) For d = nδ with 0 < δ < 1/3, there is a

coupling on (Gd, G, H) and a constant c = c(δ) > 0 such that

Pr[G ⊆ Gd, ∆(Gd \ (G ∪ H)) < c] = 1 − o(1),

where ∆(F ) is the maximum degree of F .
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Generating random d-regular graphs

• List all regular graphs and choose one randomly

• Use the configuration model

Recall,

Pr[Simple] ∼ exp
(

−
d2 − 1

4

)

.
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• An algorithm of Steger and Wormald to generate a

SIMPLE perfect matching in the configuration model

(1) We pick pairs of clones one by one.

(2) We never pick an edge which creates a loop. Namely, we never

pick pairs of clones of the same vertex.

(3) Assume that a bunch of edges are picked. In the next step, we

only pick a pair of clones that does not create a parallel edge.

Such a pair that does not create a loop is called suitable.
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• An algorithm of Steger and Wormald to generate a

SIMPLE perfect matching in the configuration model

(I) Start with a set M of nd clones (nd even) partitioned into n

groups of size d.

(II) Choose two unmatched clones u, v uniformly at random. If the

pair u, v is suitable, match the pair. If not, u, v remain unmatched.

Repeat until no suitable pair exists.

(III) If all clones are matched, output it. Otherwise return to step

(I).
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• An algorithm of Steger and Wormald to generate a

SIMPLE perfect matching in the configuration model

(I) Start with a set M of nd clones (nd even) partitioned into n

groups of size d.

(II) Choose two unmatched clones u, v uniformly at random. If the

pair u, v is suitable, match the pair. If not, u, v remain unmatched.

Repeat until no suitable pair exists.

(III) If all clones are matched, output it. Otherwise the algorithm

fails.

Q1: What is the probability of ‘fail’?

Q2: If it succeeds, is it uniform (among all simple perfect

matching)?
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An algorithm of Steger and Wormald:

Does it generate the (uniform) random regular graph?
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An algorithm of Steger and Wormald:

Does it generate the (uniform) random regular graph?

No! But, almost.

348



Theorem (Steger & Wormald) If d = o(n1/28), then for every

d-regular graph G on n vertices

Pr[the algorithm yields G] = (1 + o(1))pu.

Theorem (K & Vu)

If d = o(n1/3/ log1/2 n), then for every d-regular graph G on n

vertices

Pr[the algorithm yields G] = (1 + o(1))pu.
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Gd =random d-regular graph,

G = G(n, (1 − o(1))d/n) independent random graphs

Theorem For d = nδ with 0 < δ < 1/3, there is a coupling on

(Gd, G) such that

Pr[G ⊆ Gd] = 1 − o(1).

Proof idea. We keep choosing uniform random edge {u,v} of Kn

with REPITITION and regard u, v as their clones (u, i), (v, j),

where (u, i) and (v, j) are chosen uniformly at random among all

unmatched clones of u and v, respectively.
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Gd =random d-regular graph,

G = G(n, (1 − o(1))d/n) independent random graphs

Theorem For d = nδ with 0 < δ < 1/3, there is a coupling on

(Gd, G) such that

Pr[G ⊆ Gd] = 1 − o(1).

Proof idea. We keep choosing uniform random edge {u,v} of Kn

with REPITITION and regard u, v as their clones (u, i), (v, j),

where (u, i) and (v, j) are chosen uniformly at random among all

unmatched clones of u and v, respectively.

This does not work!

Why?
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