10 Poisson Cloning Models

Theorem (K) Supercritical region: Let $p = \frac{1+\varepsilon}{n}$ with $\varepsilon \gg n^{-1/3}$, and $1 \ll \alpha \ll (\varepsilon^3 n)^{1/2}$. Then

$$\Pr\left[|W(n,p) - \theta_{\varepsilon}n| \ge \alpha \left(\frac{n}{\varepsilon}\right)^{1/2}\right] \le 2e^{-\Omega(\alpha^2)}$$

Luczak, 1990: With probability $1 - O((\varepsilon^3 n)^{-1/9})$,

$$|W(n,p) - \theta_{\varepsilon}n| \le 0.2n^{2/3}.$$

(Notice that $(\frac{n}{\varepsilon})^{1/2} \ll n^{2/3}$.)

Theorem (K) Subcritical region: Suppose $\lambda = 1 - \varepsilon$ with $n^{-1/3} \ll \varepsilon \ll 1$, then,

$$\Pr\left[W(n,p) \ge \frac{\log(\varepsilon^3 n) - 2.5 \log \log(\varepsilon^3 n) + c}{-(\varepsilon + \log(1-\varepsilon))}\right] \le 2e^{-\Omega(c)},$$

and

$$\Pr\left[W(n,p) \le \frac{\log(\varepsilon^3 n) - 2.5 \log \log(\varepsilon^3 n) - c}{-(\varepsilon + \log(1-\varepsilon))}\right] \le 2e^{-e^{\Omega(c)}},$$

for a positive constant c > 0.

improving

$$(2-\alpha)\frac{\log(\varepsilon^3 n)}{\varepsilon^2} \le W(n,p) \le (2+\alpha)\frac{\log(\varepsilon^3 n)}{\varepsilon^2},$$

for $\alpha \gg \max\{\varepsilon, \log^{-1/2}(\varepsilon^3 n)\}.$

We may also define the **Poisson Cloning Models** for Random k-uniform hypergraphs Random k-SAT Problems Random Directed Graphs

Similar analyses are possible using PCM and COLA for

- The k-core problem for hypergraph (Pittel-Spencer-Wormald, ...)
- Structures of the giant component:

e.g. # of vertices of degree $i \ge 2$

(Luczak, Pittel, ...)

- Strong component of the random directed graph (Karp, ...)
- Pure literal rule for random *k*-SAT problems (Broder-Frieze-Upfal, ...)

And more

- \bullet Unit clause algorithm for random $k\mbox{-}\mathrm{SAT}$ problems (Chao-Franco, $\ldots)$
- Karp-Sipser Algorithm

(Karp-Sipser, Aronson-Frieze-Pittel, ...)

• Giant Component of

 $H \cup G(n,p)$

for a fixed graph H. (K-Spencer)

The k-core Problem

A k-core of a graph is a largest subgraph with minimum degree at least k

(due to **Bollobás**).

Pittel, Spencer & Wormald ('96): For random graph G(n, p) and

$$\lambda_k = \min_{\rho > 0} \frac{\rho}{P(\rho, k - 1)},$$

where

$$P(\rho, k-1) := \Pr\left(\operatorname{Poi}(\rho) \ge k-1\right) = e^{-\rho} \sum_{l=k-1}^{\infty} \frac{\rho^l}{l!},$$

If
$$k \ge 3$$
,

$$\Pr\left[G(n,\lambda/(n-1)) \text{ has a } k\text{-core }\right] \to \begin{cases} 0 & \text{if } \lambda < \lambda_k - n^{-\delta} \\ 1 & \text{if } \lambda > \lambda_k + n^{-\delta}, \end{cases}$$

for any
$$\delta \in (0, 1/2)$$
, and
 $\Pr\left[\text{either } \exists \text{ no } k\text{-core or } \exists k\text{-core of size} \ge (1 - n^{-\delta})\lambda_k^* n\right]$
 $\rightarrow 1.$

Recall,

$$\lambda_k = \min_{\rho > 0} \frac{\rho}{P(\rho, k - 1)}.$$

(improving Łuczak's result).

C. Cooper (\geq '02): Simpler proof for

$$\Pr\left[G(n,\lambda/(n-1)) \text{ has a } k\text{-core }\right] \to \begin{cases} 0 & \text{if } \lambda < (1-\varepsilon)\lambda_k \\ 1 & \text{if } \lambda > (1+\varepsilon)\lambda_k \end{cases}$$

(K) For Poisson Cloning Model
$$G_{PC}(n, p)$$
 and $k \ge 3$,
 $\Pr\left[G_{PC}(n, \lambda/(n-1)) \text{ has a } k\text{-core }\right] \rightarrow$

$$\begin{cases} 0 \quad \text{if } \lambda_k - \lambda \gg n^{-1/2} \\ 1 \quad \text{if } \lambda - \lambda_k \gg n^{-1/2}, \end{cases}$$

 $\Pr\left[\text{either }\exists \text{ no }k\text{-core or }\right.$

$$\exists k \text{-core of size} \ge (1 - (\omega(n)n)^{-1/2})\lambda_k^* n \Big] = 1 - o(1),$$

for any $\omega(n) \to \infty$. Recall,

$$\lambda_k = \min_{\rho > 0} \frac{\rho}{P(\rho, k - 1)}.$$

• Poisson Cloning Model $G_{PC}(n, p)$: Definition

Take i.i.d Poisson random variables d(v)'s, $v \in V$, with mean $\lambda = p(n-1)$, then, for each $v \in V$, take d(v) copies, or **clones**, of v. If $\sum_{v \in V} d(v)$ is even,

> generate a (uniform) random perfect matching on the set of all clones and then contract clones of the same vertex.

If $\sum_{v \in V} d(v)$ is odd, generate a perfect match excluding a clone and a loop.

• Equivalent Definition

Take a Poisson λn random variable M_{λ} and M_{λ} unlabelled clones. Then, independently label each clone by v chosen uniformly at random among all vertices $\{1, ..., n\}$.

If M is even,

generate a (uniform) random perfect matching on the set of all clones and then contract clones of the same vertex.

If M is odd, generate a perfect match excluding a clone and a loop.

• Or, take a Poisson λn random variable M_{λ} and M_{λ} unlabelled clones. Assume that these clones are ordered. Take the first two clones and match them. Then, label those two clones uniformly at random.

If M is even,

this will generate a (uniform) random perfect matching as well as a valid labelling.

If M is odd, ...

$$G(n,p)$$
 vs. $G_{PC}(n,p)$

Theorem (K) If pn = O(1), then there are positive constants c_1 and c_2 so that for any collection \mathcal{G} of SIMPLE graphs

 $\Pr[G(n,p) \in \mathcal{G}] \ge c_1 \Pr[G_{PC}(n,p) \in \mathcal{G}]$

and

$$\Pr[G(n,p) \in \mathcal{G}] \le c_2 \left(\left(\Pr[G_{PC}(n,p) \in \mathcal{G}] \right)^{1/2} + e^{-n} \right)$$

In particular,

$$\Pr[G(n,p) \in \mathcal{G}] \to 0 \quad \text{iff} \quad \Pr[G_{PC}(n,p) \in \mathcal{G}] \to 0, \text{ and}$$
$$\Pr[G(n,p) \in \mathcal{G}] \to 1 \quad \text{iff} \quad \Pr[G_{PC}(n,p) \in \mathcal{G}] \to 1.$$

Proof. For $\lambda = p(n-1)$ and a fixed simple graph G with m edges,

$$\Pr[G_{PC}(n,p) = G]$$

= $\Pr[M_{\lambda} = 2m] \cdot (m\frac{2}{n}\frac{1}{n})((m-1)\frac{2}{n}\frac{1}{n}) \cdots (1\frac{2}{n}\frac{1}{n})$
= $\frac{e^{-\lambda n}(\lambda n)^{2m}}{(2m)!} \frac{2^m m!}{n^{2m}}.$

Using

$$(2m)! = (1+O(\frac{1}{m}))(4\pi m)^{1/2}(\frac{2m}{e})^{2m}$$

= $(1+O(\frac{1}{m}))(\pi m)^{-1/2}2^{2m}\left((2\pi m)^{1/2}(\frac{m}{e})^m\right)^2$
= $(1+O(\frac{1}{m}))(\pi m)^{-1/2}2^{2m}(m!)^2$

Using

$$(2m)! = (1 + O(\frac{1}{m}))(\pi m)^{-1/2} 2^{2m} (m!)^2$$

we have

$$\Pr[G_{PC}(n,p) = G] = \frac{e^{-\lambda n} (\lambda n)^{2m}}{(2m)!} \frac{2^m m!}{n^{2m}}$$
$$= (\frac{\lambda}{n})^m e^{-\lambda n/2 + O(\frac{1}{m})} \frac{(\pi m)^{1/2} e^{-\lambda n/2} (\frac{\lambda n}{2})^m}{m!}$$

On the other hand, $\lambda = p(n-1)$ yields,

$$\Pr[G(n,p) = G] = p^m (1-p)^{\binom{n}{2}-m} \\ = (\frac{\lambda}{n-1})^m e^{-\lambda n/2 + pm - p^2 n^2/4 + O(p^2 m + p^3 n^2)}$$

Take the smallest $\ell_1, \ell_2 > 0$ such that, if $m \leq \lambda n/2 - \ell_1$ or $m \geq \lambda n/2 + \ell_2$, then

$$\frac{(2\pi\lambda n)^{1/2}e^{-\lambda n/2}(\frac{\lambda n}{2})^m}{m!} \le \Pr[G_{PC}(n,p)\in\mathcal{G}]^{1/2} + e^{-n}.$$

It is easy to check that $\ell_1, \ell_2 \leq cn$ for a constant c independent of $\Pr[G_{PC}(n, p) \in \mathcal{G}]$. We consider

$$\Pr[G(n,p) \in \mathcal{G}] = \sum_{\substack{G \in \mathcal{G} \\ -\ell_1 < |G| - \lambda_n/2 < \ell_2}} \Pr[G(n,p) = G] + \sum_{\substack{G \in \mathcal{G} \\ |G| \le \lambda_n/2 - \ell_1}} \Pr[G(n,p) = G] + \sum_{\substack{G \in \mathcal{G} \\ |G| \ge \lambda_n/2 + \ell_1}} \Pr[G(n,p) = G].$$

First,

$$\Pr[G_{PC}(n,p) \in \mathcal{G}]$$

$$\geq \sum_{\substack{G \in \mathcal{G} \\ -\ell_1 < |G| - \lambda n/2 < \ell_2}} \Pr[G_{PC}(n,p) = G]$$

$$\geq c_1^{-1} \sum_{\substack{G \in \mathcal{G} \\ -\ell_1 < |G| - \lambda n/2 < \ell_2}} \Pr[G(n,p) = G] \Pr[G_{PC}(n,p) \in \mathcal{G}]^{1/2}$$

gives

$$\sum_{\substack{G \in \mathcal{G} \\ -\ell_1 < |G| - \lambda n/2 < \ell_2}} \Pr[G(n, p) = G] \le c_1 \Pr[G_{PC}(n, p) \in \mathcal{G}]^{1/2}$$

Second, by $p\binom{n}{2} = \lambda n/2$, it is easy to check that $\sum \operatorname{Pr}[G(n,p) = G] \leq \sum \operatorname{Pr}\left[Bin\left(\binom{n}{2}, p\right) = \ell\right]$ $\overline{G \in \mathcal{G}}_{|G| \le \lambda n/2 - \ell_1}$ $\ell \leq \lambda n/2 - \ell_1$ $\leq c_2 \qquad \sum \qquad \Pr[\operatorname{Poi}(\lambda n/2) = \ell]$ $\ell < \lambda n/2 - \ell_1$ $\leq (c_2 + o(1))(\pi \lambda n)^{1/2} \Pr[\operatorname{Poi}(\lambda n/2) = \lambda n/2 - \ell_1].$ Ex 1. $\Pr[Bin(m,p) = \ell] = O\left(e^{O(p^2m)} \Pr[\operatorname{Poi}(pm)] = \ell]\right)$ 2a. $\mathbf{y} = \Pr[\operatorname{Poi}(\lambda n/2) = \ell]$ $\ell < \lambda n/2 - \ell_1$ $\leq (1+o(1))(\pi\lambda n)^{1/2} \Pr[\operatorname{Poi}(\lambda n/2) = \lambda n/2 - \ell_1]$

Similarly,

$$\begin{split} \sum_{\substack{G \in \mathcal{G} \\ |G| \ge \lambda n/2 + \ell_2}} \Pr[G(n, p) = G] &\leq \sum_{\ell \ge \lambda n/2 + \ell_2} \Pr\left[Bin\left(\binom{n}{2}, p\right) = \ell\right] \\ &\leq c_3 \sum_{\ell \ge \lambda n/2 + \ell_2} \Pr[\operatorname{Poi}(\lambda n/2) = \ell] \end{split}$$

Ex.

2b.
$$\sum_{\ell \ge \lambda n/2 + \ell_2} \Pr[\operatorname{Poi}(\lambda n/2) = \ell]$$
$$\leq (1 + o(1))(\pi \lambda n)^{1/2} \Pr[\operatorname{Poi}(\lambda n/2) = \lambda n/2 + \ell_2]$$

11 Cut-Off Line Lemma

For θ in the range $0 \leq \theta \leq 1$, let $\Lambda(\theta)$ be the cut-off value when $(1 - \theta^2)\lambda n$ or more clones are matched for the first time. Conversely, let $M(\theta)$ be the number of matched clones until the cut-off line reaches $\theta\lambda$.

Lemma 11.1 (Cut-off Line Lemma) For $\theta_1 < 1$ uniformly bounded below from 0 and $0 < \Delta \leq n$,

$$\Pr\left[\max_{\theta:\theta_1 \le \theta \le 1} |\Lambda(\theta) - \theta\lambda| \ge \frac{\Delta}{n}\right] \le 2e^{-\Omega(\min\{\Delta, \frac{\Delta^2}{(1-\theta_1)n}\})},$$

and

$$\Pr\left[\max_{\theta:\theta_1 \le \theta \le 1} |M(\theta) - (1 - \theta^2)\lambda n| \ge \Delta\right] \le 2e^{-\Omega(\min\{\Delta, \frac{\Delta^2}{(1 - \theta_1)n}\})}$$

Conditioned on $M_{\lambda} = M$, that is, there are M clones initially. Then,

$$E[\Lambda_1] = \left(1 - \frac{1}{M-1}\right)\lambda = \left(1 - \frac{1}{M-1}\right)\Lambda_0$$

since we took the largest number among M - 1 i.i.d uniform random numbers from 0 to λ . Similarly, in expectation,

$$E[\Lambda_{i+1}|\Lambda_i] = \left(1 - \frac{1}{M - 2i - 1}\right)\Lambda_i$$

Precisely,

$$\Lambda_{i+1} = (1 - T_i)\Lambda_i = \lambda \prod_{j=0}^i \left(1 - T_j\right),$$

where T_i are mutually independent and

 $T_i = \min$ of M - 2i - 1 uniform random numbers in [0, 1],

i.e,

$$\Pr[T_i \ge t] = (1-t)^{M-2i-1} \approx e^{-(M-2i-1)t}.$$

• Why $M(\theta) = (1 - \theta^2)\lambda n$?

At $\Lambda = \theta \lambda$, or simply at $\theta \lambda$, (that is, when the cut-off line reaches $\theta \lambda$),

$$\Delta(\theta\lambda) \approx \left(1 - \frac{1}{\lambda n - M(\theta) - 1}\right) \theta\lambda - \theta\lambda$$

implies

$$\Delta \theta \approx \frac{-\theta}{\lambda n - M(\theta) - 1}.$$

Clearly, $\Delta N(\theta) = 2$. Hence,

$$\frac{\Delta M}{\Delta \theta} \approx \frac{-2(\lambda n - M(\theta) - 1)}{\theta}$$

Lemma 11.2 Given $M_{\lambda} = M$, let T_j 's be mutually independent, $j = M, M - 1, ..., M - 2\ell$ with $N - 2\ell \gg 1$. Then, denoting $\theta_i = (1 - 2i/M)^{1/2}$, we have, for $\varepsilon \leq 0.1$,

$$\Pr\left[\max_{i:1\leq i\leq \ell} \left|\prod_{\substack{j=M\\2\mid (M-j)}}^{M-2i} \left(1-T_j\right) - \theta_i\right| \geq \varepsilon\right] \leq 10e^{-\frac{1+o(1)}{7}\min\{\varepsilon\theta_\ell^2 M, \frac{\varepsilon^2 \theta_\ell^2 M}{1-\theta_\ell}\}}$$

In particular, if $\theta_{\ell} = \Omega(1)$, then

$$\Pr\left[\max_{i:1\leq i\leq \ell} \left|\prod_{\substack{j=M\\2\mid (M-j)}}^{M-2i} \left(1-T_j\right) - \theta_i\right| \geq \varepsilon\right] \leq 2e^{-\Omega(\min\{\varepsilon M, \frac{\varepsilon^2 M}{1-\theta_\ell}\})}.$$

Recall

 $T_i = \min$ of M - 2i - 1 uniform random numbers in [0, 1],

i.e,

$$\Pr[T_i \ge t] = (1-t)^{M-2i-1} \approx e^{-(M-2i-1)t}.$$

Proof. Proof of Lemma 11.2 As

$$\prod_{\substack{j=M\\2\mid (M-j)}}^{\theta_i^2 M} (1-T_j) = \exp\bigg(\sum_{\substack{j=M\\2\mid (M-j)}}^{\theta_i^2 M} \log(1-T_j)\bigg),$$

we show a high concentration for $\log(1 - T_j)$. Since

$$\Pr[\exists j, T_j \ge 1/2] \le \sum_{j=M}^{\theta_\ell^2 M} 2^{-j+1} \le 2^{-\theta_\ell^2 M+2},$$

and

$$-x - x^2 \le \log(1 - x) \le -x \quad \forall x : 0 \le x \le 1/2,$$

we have, with probability at least $1 - 2^{-\theta_{\ell}^{\kappa}M+2}$,

$$-T_j - T_j^2 \le \log(1 - T_j) \le -T_j, \quad \text{for all } j.$$

Thus, for $S_j = T_j - T_j^2$, and

$$T_i^* := \sum_{\substack{j=M\\2\mid (M-j)}}^{\theta_i^2 M} T_j, \text{ and } S_i^* := \sum_{\substack{j=N\\2\mid (M-j)}}^{\theta_i^2 M} S_j,$$

it is enough to show that both of $E[S_i^*]$ and $E[T_i^*]$ are very close to θ_i and S_i^* , T_i^* are highly concentrated near their means. That is, it is enough to show that

$$\Pr[\max_{i} |S_{i}^{*} - E[S_{i}^{*}]| \ge \varepsilon] \le 4e^{-\frac{1+o(1)}{6}\min\{\frac{\varepsilon^{2} \theta_{\ell}^{2} M}{1-\theta_{\ell}}, \varepsilon \theta_{\ell}^{2} M\}},$$

and

$$\Pr[\max_{i} |T_{i}^{*} - E[T_{i}^{*}]| \ge \varepsilon] \le 4e^{-\frac{1+o(1)}{6}\min\{\frac{\varepsilon^{2} \theta_{\ell}^{2}M}{1-\theta_{\ell}}, \varepsilon \theta_{\ell}^{2}M\}}$$

12 The *k*-core Problem

A k-core of a graph is a largest subgraph with minimum degree at least k

(due to **Bollobás**).

Pittel, Spencer & Wormald ('96): For random graph G(n, p) and

$$\lambda_k = \min_{\rho > 0} \frac{\rho}{Q(\rho, k - 1)},$$

where

$$Q(\rho, k-1) := \Pr\left(\operatorname{Poi}(\rho) \ge k-1\right) = e^{-\rho} \sum_{l=k-1}^{\infty} \frac{\rho^l}{l!},$$

$$\begin{split} \text{If } k &\geq 3, \\ &\Pr\left[G(n,\lambda/(n-1)) \text{ has a } k\text{-core }\right] \to \begin{cases} 0 & \text{if } \lambda < \lambda_k - n^{-\delta} \\ 1 & \text{if } \lambda > \lambda_k + n^{-\delta}, \end{cases} \end{split}$$

for any
$$\delta \in (0, 1/2)$$
, and
 $\Pr\left[\text{either } \exists \text{ no } k\text{-core or } \exists k\text{-core of size} \ge (1 - n^{-\delta})\lambda_k^* n\right]$
 $\rightarrow 1.$

Recall,

$$\lambda_k = \min_{\rho > 0} \frac{\rho}{Q(\rho, k - 1)}.$$

(improving Łuczak's result).

C. Cooper (\geq '02): Simpler proof for

$$\Pr\left[G(n,\lambda/(n-1)) \text{ has a } k\text{-core }\right] \to \begin{cases} 0 & \text{if } \lambda < (1-\varepsilon)\lambda_k \\ 1 & \text{if } \lambda > (1+\varepsilon)\lambda_k \end{cases}$$

(K) For Poisson Cloning Model
$$G_{PC}(n, p)$$
 and $k \ge 3$,
 $\Pr\left[G_{PC}(n, \lambda/(n-1)) \text{ has a } k\text{-core }\right] \rightarrow$

$$\begin{cases} 0 \quad \text{if } \lambda_k - \lambda \gg n^{-1/2} \\ 1 \quad \text{if } \lambda - \lambda_k \gg n^{-1/2}, \end{cases}$$

 $\Pr\left[\text{either }\exists \text{ no }k\text{-core or }\right.$

$$\exists k \text{-core of size} \ge (1 - (\omega(n)n)^{-1/2})\lambda_k^* n \Big] = 1 - o(1),$$

for any $\omega(n) \to \infty$. Recall,

$$\lambda_k = \min_{\rho > 0} \frac{\rho}{Q(\rho, k - 1)}.$$

We will be

solving the problem as well as generating $G_{PC}(n, p)$.

(Recall $p = \lambda/(n-1)$).

At step 0,

A vertex v is light if d(v) < k, or the number of v-clones is less than k.

It is heavy, otherwise.

Take a light clone w and then choose the largest clone excluding w. We will be

solving the problem as well as generating $G_{PC}(n, p)$.

In general, at step i,

A vertex v is light if the number of unmatched v-clones is less than k.

It is heavy, otherwise.

Take a unmatched light clone w and then choose the largest unmatched clone except w.

• Parameters

Recall

 $M(\theta)$ = the number of matched clones at $\theta\lambda$.

For $v \in V$ and $0 \le \theta \le 1$, we define

 $d_v(\theta)$ = the number of v-clones less than $\theta\lambda$.

Let $L(\theta)$ be the number of light clones at $\theta\lambda$, and the number $H(\theta)$ of heavy clones at $\theta\lambda$ is denoted by

$$H(\theta) = \sum_{v \in V} d_v(\theta) 1(d_v(\theta) \ge k).$$

If the number of light clones has been positive until $\theta \lambda$, then all clones counted in $H(\theta)$ is not matched until $\Lambda = \theta \lambda$, and hence

$$L(\theta) = M_{\lambda} - M(\theta) - H(\theta).$$

Thus, the maximum θ such that $L(\theta) = 0$ is the same as the maximum θ such that $M_{\lambda} - M(\theta) - H(\theta) = 0$.

Lemma 12.1 Let

$$Q(\rho, k) = \Pr[\operatorname{Poi}(\rho) \ge k].$$

Then

$$\Pr\left[\max_{\theta:\theta_1 \le \theta \le 1} \left| H(\theta) - Q(\theta\lambda, k-1)\theta\lambda n \right| \ge \Delta\right] \le 2e^{-\Omega(\min\{\Delta, \frac{\Delta^2}{(1-\theta_1)n}\})}$$

Proof. First,

$$E[d_v(\theta)1(d_v(\theta) \ge k)] = e^{-\theta\lambda} \sum_{\ell \ge k} \ell \frac{(\theta\lambda)^\ell}{\ell!} = \theta\lambda e^{-\theta\lambda} \sum_{\ell \ge k} \frac{(\theta\lambda)^{(\ell-1)}}{(\ell-1)!}$$

implies that

$$E[H(\theta)] = Q(\theta\lambda, k-1)\theta\lambda n.$$

Applying a generalized Chernoff bound, we obtain the desired inequality.

Corollary 12.2

$$\Pr\left[\max_{\theta:\theta_1 \le \theta \le 1} \left| M_{\lambda} - M(\theta) - H(\theta) - \left(\theta - Q(\theta\lambda, k-1)\right) \theta\lambda n \right| \ge \Delta\right]$$
$$\le 2e^{-\Omega(\min\{\Delta, \frac{\Delta^2}{(1-\theta_1)n}\})}.$$

Notice that, assuming $\theta > 0$, $\theta = Q(\theta \lambda, k - 1)$ if and only if

$$\lambda = \frac{\theta \lambda}{Q(\theta \lambda, k - 1)}$$

This equation has a solution θ in the range $0 < \theta \leq 1$ if and only if

$$\lambda \ge \min_{\rho > 0} \frac{\rho}{Q(\rho, k - 1)}$$

Notice that

$$\frac{d}{d\rho} \frac{\rho}{Q(\rho, k-1)} = \frac{Q(\rho, k-1) - \rho P(\rho, k-2)}{Q^2(\rho, k-1)} \\ = \frac{Q(\rho, k) - (k-2)P(\rho, k-1)}{Q^2(\rho, k-1)},$$

and $Q(\rho, k) - (k-2)P(\rho, k-1) = -(k-2+O(\rho))P(\rho, k-1)$ as $\rho \to 0$ and $Q(\rho, k) - (k-2)P(\rho, k-1) \to 1$ as $\rho \to \infty$. Let ρ_{\min} be the minimum ρ satisfying

$$Q(\rho, k) - (k - 2)P(\rho, k - 1) = 0.$$

Let ρ_{\min} be the minimum ρ satisfying

$$Q(\rho, k) - (k - 2)P(\rho, k - 1) = 0.$$

For $\rho < k$, we know that

$$Q(\rho, k) = \frac{\rho^{k-1}}{(k-1)!} e^{-\rho} \sum_{\ell \ge k} \frac{(k-1)! \rho^{\ell-k+1}}{\ell!}$$

<
$$P(\rho, k-1) \sum_{\ell \ge k} \frac{\rho^{\ell-k+1}}{k^{\ell-k+1}} = \frac{\rho P(\rho, k-1)}{k-\rho},$$

in particular, $\rho \leq k-2$ yields $Q(\rho, k) < (k-2)P(\rho, k-1)$. Thus, $\rho_{\min} > k-2$ and for $\rho \geq \rho_{\min}$,

$$\frac{d}{d\rho} \Big(Q(\rho, k) - (k-2)P(\rho, k-1) \Big) = (k-1)P(\rho, k-1) - (k-2)P(\rho, k-2)$$
$$= (\rho - k + 2)P(\rho, k-2) > 0.$$

All together, we have

$$\frac{d}{d\rho}\frac{\rho}{Q(\rho,k-1)} < 0, \quad \text{for } \rho < \rho_{\min},$$

and

$$\frac{d}{d\rho}\frac{\rho}{Q(\rho, k-1)} > 0, \quad \text{for } \rho > \rho_{\min}.$$

Theorem 12.3 Let θ_T be the minimum θ such that $L(\theta) = 0$ for the first time, and θ_{λ} be the largest solution ≤ 1 of the equation

$$\theta - Q(\theta\lambda, k-1) = 0.$$

Then

$$\Pr[|\theta_T - \theta_{\lambda}| \ge \sigma] = 2e^{-\Omega(\sigma^2 n)}$$

Proof. Notice that θ_{λ} is the largest $\theta < 1$ such that

$$\frac{\theta\lambda}{Q(\theta\lambda,k-1)} = \lambda$$

It is easy to check that

$$\theta - Q(\theta\lambda, k-1) = \Omega(\theta - \theta_{\lambda}) \text{ for } \theta > \theta_{\lambda},$$

and there is a constant $\theta_1 > 0$

$$\theta - Q(\theta\lambda, k - 1) = -\Omega(\theta_{\lambda} - \theta) \text{ for } \theta_{\lambda} - \theta_{1} \leq \theta < \theta_{\lambda}.$$

Thus,

$$\Pr[\theta_T \ge \theta_{\varepsilon} + \sigma] = \Pr[\min_{\theta \ge \theta_{\lambda} + \sigma} L(\theta) = 0]$$

$$\le \Pr[\min_{\theta \ge \theta_{\lambda} + \sigma} M_{\lambda} - M(\theta) - H(\theta) \le 0]$$

$$\le 2e^{-\Omega(\sigma^2 n)},$$

and

$$\Pr[\theta_T < \theta_{\varepsilon} - \sigma] = \Pr[\min_{\theta \ge \theta_{\lambda} - \sigma} L(\theta) > 0]$$

$$\leq \Pr[\min_{\theta \ge \theta_{\lambda} - \sigma} M_{\lambda} - M(\theta) - H(\theta) > 0]$$

$$\leq 2e^{-\Omega(\min\{\theta_1^2 n, \sigma^2 n\})} = 2e^{-\Omega(\sigma^2 n)}.$$

Corollary 12.4

$$\Pr\left[\left||V_C| - Q(\theta_{\lambda}\lambda, k)n\right| \ge \sigma n\right] = 2e^{-\Omega(\sigma^2 n)}.$$

13 The Emergence Of the Giant Component

Theorem 13.1 Supercritical Phase: Let $\lambda := \lambda(n, p) = 1 + \varepsilon$ with $n^{-1/3} \ll \varepsilon \ll 1$, $\mu := (1 - \theta_{\varepsilon})\lambda$ and $1 \ll \alpha \ll (\varepsilon^3 n)^{1/2}$. Then, with probability $1 - e^{-\Omega(\alpha^2)}$, $G_{PC}(n, p)$ may be decomposed by three vertex disjoint graphs C, S and G, where C is connected and

 $\theta_{\varepsilon}n - \alpha(n/\varepsilon)^{1/2} \le |C| \le \theta_{\varepsilon}n + \alpha(n/\varepsilon)^{1/2},$

and $|S| \leq \frac{\alpha^2}{\varepsilon^2}$, and G has the same distribution as $G_{PC}(n^*, p^*)$ for some n^* and p^* satisfying

$$(1 - \theta_{\varepsilon})n - \alpha(n/\varepsilon)^{1/2} \le n^* \le (1 - \theta_{\varepsilon})n + \alpha(n/\varepsilon)^{1/2},$$

and

$$\mu - \alpha(\varepsilon n)^{-1/2} \le \lambda(n^*, p^*) \le \mu + \alpha(\varepsilon n)^{-1/2}.$$

Subcritical Phase: Suppose $\lambda := \lambda(n, p) = 1 - \varepsilon$ with $n^{-1/3} \ll \varepsilon \ll 1$. Then, the size $\ell_1^{PC}(n, p)$ of the largest component of $G_{PC}(n, p)$ satisfies

$$\Pr\left[\ell_1^{PC}(n,p) \ge \frac{\log(\varepsilon^3 n) - 2.5\log\log(\varepsilon^3 n) + c}{-(\varepsilon + \log(1-\varepsilon))}\right] \le 2e^{-\Omega(c)},$$

and

$$\Pr\left[\ell_1^{PC}(n,p) \le \frac{\log(\varepsilon^3 n) - 2.5\log\log(\varepsilon^3 n) - c}{-(\varepsilon + \log(1-\varepsilon))}\right] \le 2e^{-e^{\Omega(c)}},$$

for any positive constant c > 0.

Inside Window: Suppose $\lambda := \lambda(n, p) = 1 + \varepsilon$ with $|\varepsilon| = O(n^{1/3})$. Then, whp,

$$\ell_1^{PC}(n,p) = \Theta(n^{2/3}).$$

(All constants in $\Omega(\cdot)$'s do not depend on any of ε , α and c.)

Proof. (Supercritical Region) Let

$$\theta_1 = \frac{\alpha^2}{\theta_{\varepsilon}^2 n}, \quad \theta_2 = \theta_{\varepsilon} - \alpha (\theta_{\varepsilon} n)^{-1/2},$$

and $\theta_3 = \theta_{\varepsilon} + \alpha (\theta_{\varepsilon} n)^{-1/2}$. (Recall θ_{ε} is the larger solution of the equation $1 - \theta - e^{-(1+\varepsilon)\theta} = 0$.)

Let $H(\theta)$ be the number of clones of vertices that have no clones larger than or equal to $\theta\lambda$, i.e.,

$$H(\theta) = \sum_{v \in V} d_v(\theta) \mathbf{1}(d_v - d_v(\theta) = 0),$$

and let

$$B(\theta) = M_{\lambda} - M(\theta) - H(\theta).$$

Denoted by $F(\theta)$ is the number of clones activated by free steps. Then the number $A(\theta)$ of active clones at $\theta\lambda$ satisfies

$$B(\theta) \le A(\theta) \le B(\theta) + F(\theta).$$

We will show that each of the following events occur with probability $1 - e^{-\Omega(\alpha^2)}$:

- (i) For $\rho = \alpha^2 (\theta_{\varepsilon} n)^{-1}$, we have $F(1 \theta_1) \leq M(V_{\rho})$.
- (ii) For θ in the range $\theta_1 \leq \theta \leq \theta_2$, all $B(1-\theta)$ are positive.
- (iii) For some θ between θ_2 and θ_3 , $\mathring{A}(1-\theta) = 0$.

The proof basically follows from

(1)
$$E[B(1-\theta)] \approx \lambda n - (1 - (1-\theta)^2)\lambda n - (1-\theta)\lambda e^{-\theta\lambda}n$$

= $(1 - \theta - e^{-\theta\lambda})(1-\theta)\lambda n.$

(2) The random variable $B(1-\theta) = M_{\lambda} - M(1-\theta) - H(1-\theta)$ is highly concentrated near $(1-\theta - e^{-\theta\lambda})(1-\theta)\lambda n$.

14 Random Graph vs. Random Regular graph

An attempt to study RRG by means of RG or vice versa:

 G_d =random d-regular graph, G = G(n, (1 - o(1))d/n), H = G(n, o(d/n)) independent random graphs

Conjecture For $\log n \ll d \leq n/2$, there is a coupling on (G_d, G, H) such that

$$\Pr[G \subseteq G_d \subseteq G \cup H] = 1 - o(1).$$

If true, k-connectivity, Hamiltonicity, independence number, (list)chromatic number, the second largest eigenvalue, ... (cf: Copper, Frieze & Reed Krivelevich, Sudakov, Vu & Wormald) Partial Result:

Theorem (K & Vu) For $d = n^{\delta}$ with $0 < \delta < 1/3$, there is a coupling on (G_d, G, H) and a constant $c = c(\delta) > 0$ such that

$$\Pr[G \subseteq G_d, \Delta(G_d \setminus (G \cup H)) < c] = 1 - o(1),$$

where $\Delta(F)$ is the maximum degree of F.

Generating random *d*-regular graphs

- List all regular graphs and choose one randomly
- Use the configuration model

Recall,

$$\Pr[\text{Simple}] \sim \exp\left(-\frac{d^2 - 1}{4}\right).$$

• An algorithm of Steger and Wormald to generate a SIMPLE perfect matching in the configuration model

(1) We pick pairs of clones one by one.

(2) We never pick an edge which creates a loop. Namely, we never pick pairs of clones of the same vertex.

(3) Assume that a bunch of edges are picked. In the next step, we only pick a pair of clones that does not create a parallel edge.

Such a pair that does not create a loop is called suitable.

• An algorithm of Steger and Wormald to generate a SIMPLE perfect matching in the configuration model

(I) Start with a set M of nd clones (nd even) partitioned into n groups of size d.

(II) Choose two unmatched clones u, v uniformly at random. If the pair u, v is suitable, match the pair. If not, u, v remain unmatched. Repeat until no suitable pair exists.

(III) If all clones are matched, output it. Otherwise return to step (I).

• An algorithm of Steger and Wormald to generate a SIMPLE perfect matching in the configuration model

(I) Start with a set M of nd clones (nd even) partitioned into n groups of size d.

(II) Choose two unmatched clones u, v uniformly at random. If the pair u, v is suitable, match the pair. If not, u, v remain unmatched. Repeat until no suitable pair exists.

(III) If all clones are matched, output it. Otherwise the algorithm fails.

Q1: What is the probability of 'fail'?

Q2: If it succeeds, is it uniform (among all simple perfect matching)?

An algorithm of Steger and Wormald:

Does it generate the (uniform) random regular graph?

An algorithm of Steger and Wormald:

Does it generate the (uniform) random regular graph?

No! But, almost.

Theorem (Steger & Wormald) If $d = o(n^{1/28})$, then for every d-regular graph G on n vertices

Pr[the algorithm yields G] = $(1 + o(1))p_u$.

Theorem (K & Vu)

If $d = o(n^{1/3}/\log^{1/2} n)$, then for every *d*-regular graph *G* on *n* vertices

 $\Pr[\text{the algorithm yields } G] = (1 + o(1))p_u.$

 G_d =random *d*-regular graph,

G = G(n, (1 - o(1))d/n) independent random graphs

Theorem For $d = n^{\delta}$ with $0 < \delta < 1/3$, there is a coupling on (G_d, G) such that

 $\Pr[G \subseteq G_d] = 1 - o(1).$

Proof idea. We keep choosing uniform random edge $\{u,v\}$ of K_n with REPITITION and regard u, v as their clones (u, i), (v, j), where (u, i) and (v, j) are chosen uniformly at random among all unmatched clones of u and v, respectively.

 G_d =random *d*-regular graph,

G = G(n, (1 - o(1))d/n) independent random graphs

Theorem For $d = n^{\delta}$ with $0 < \delta < 1/3$, there is a coupling on (G_d, G) such that

 $\Pr[G \subseteq G_d] = 1 - o(1).$

Proof idea. We keep choosing uniform random edge $\{u,v\}$ of K_n with REPITITION and regard u, v as their clones (u, i), (v, j), where (u, i) and (v, j) are chosen uniformly at random among all unmatched clones of u and v, respectively.

This does not work!

Why?