14 Random Graph vs. Random Regular graph

An attempt to study RRG by means of RG or vice versa:
$G_{d}=$ random d-regular graph,
$G=G(n,(1-o(1)) d / n), H=G(n, o(d / n))$ independent random graphs

Conjecture For $\log n \ll d \leq n / 2$, there is a coupling on $\left(G_{d}, G, H\right)$ such that

$$
\operatorname{Pr}\left[G \subseteq G_{d} \subseteq G \cup H\right]=1-o(1)
$$

If true, k-connectivity, Hamiltonicity, independence number, (list)chromatic number, the second largest eigenvalue, ... (cf:
Copper, Frieze \& Reed
Krivelevich, Sudakov, Vu \& Wormald)

Partial Result:
Theorem ($\mathrm{K} \& \mathrm{Vu}$) For $d=n^{\delta}$ with $0<\delta<1 / 3$, there is a coupling on $\left(G_{d}, G, H\right)$ and a constant $c=c(\delta)>0$ such that

$$
\operatorname{Pr}\left[G \subseteq G_{d}, \Delta\left(G_{d} \backslash(G \cup H)\right)<c\right]=1-o(1)
$$

where $\Delta(F)$ is the maximum degree of F.

Generating random d-regular graphs

- An algorithm of Steger and Wormald to generate a SIMPLE perfect matching in the configuration model
(1) We pick pairs of clones one by one.
(2) We never pick an edge which creates a loop. Namely, we never pick pairs of clones of the same vertex.
(3) Assume that a bunch of edges are picked. In the next step, we only pick a pair of clones that does not create a parallel edge. Such a pair that does not create a loop is called suitable.
- An algorithm of Steger and Wormald to generate a SIMPLE perfect matching in the configuration model
(I) Start with a set V_{d} of $n d$ clones ($n d$ even) partitioned into n groups of size d.
(II) Choose two unmatched clones u, v uniformly at random. If the pair u, v is suitable, match the pair. If not, u, v remain unmatched. Repeat until no suitable pair exists.
(III) If all clones are matched, output it. Otherwise, the algorithm fails.
- An algorithm of Steger and Wormald to generate a SIMPLE perfect matching in the configuration model
(I) Start with a set V_{d} of $n d$ clones ($n d$ even) partitioned into n groups of size d.
(II) Choose two unmatched clones u, v uniformly at random. If the pair u, v is suitable, match the pair. If not, u, v remain unmatched. Repeat until no suitable pair exists.
(III) If all clones are matched, output it. Otherwise, the algorithm fails.

Q1: What is the probability of 'fail'?
Q2: If it succeeds, is it uniform (among all perfect matchings that yield SIMPLE d-regular graphs)?

An algorithm of Steger and Wormald:

Does it generate the (uniform) random regular graph?

An algorithm of Steger and Wormald:

Does it generate the (uniform) random regular graph?

No! But, almost.

Theorem (Steger \& Wormald) If $d=o\left(n^{1 / 28}\right)$, then for every d-regular graph G on n vertices

$$
\operatorname{Pr}[\text { the algorithm yields } G]=(1+o(1)) p_{u} .
$$

Theorem ($\mathrm{K} \& \mathrm{Vu}$)
If $d=o\left(n^{1 / 3} / \log ^{1 / 2} n\right)$, then for every d-regular graph G on n vertices
$\operatorname{Pr}[$ the algorithm yields $G]=(1+o(1)) p_{u}$.
$G_{d}=$ random d-regular graph,
$G=G(n,(1-o(1)) d / n)$ independent random graphs
Theorem For $d=n^{\delta}$ with $0<\delta<1 / 3$, there is a coupling on $\left(G_{d}, G\right)$ such that

$$
\operatorname{Pr}\left[G \subseteq G_{d}\right]=1-o(1)
$$

Proof idea. We keep choosing uniform random edge $e_{t}:=\left\{u_{t}, v_{t}\right\}$ of K_{n} with REPITITION and regard u, v as their clones $(u, i),(v, j)$, where (u, i) and (v, j) are chosen uniformly at random among all unmatched clones of u and v, respectively. Match (u, i) and (v, j).
$G_{d}=$ random d-regular graph,
$G=G(n,(1-o(1)) d / n)$ independent random graphs
Theorem For $d=n^{\delta}$ with $0<\delta<1 / 3$, there is a coupling on
$\left(G_{d}, G\right)$ such that

$$
\operatorname{Pr}\left[G \subseteq G_{d}\right]=1-o(1)
$$

Proof idea. We keep choosing uniform random edge $e_{t}:=\left\{u_{t}, v_{t}\right\}$ of K_{n} with REPITITION and regard u, v as their clones $(u, i),(v, j)$, where (u, i) and (v, j) are chosen uniformly at random among all unmatched clones of u and v, respectively. Match (u, i) and (v, j).

This does not work!
Why?

For a suitable edge $\{(u, i),(v, j)\}$ at the conclusion of step $t-1$, the probability that $\{(u, i),(v, j)\}$ is added in step t is

$$
\binom{n}{2}^{-1} \frac{1}{d_{t-1}(u) d_{t-1}(v)}
$$

where $d_{t-1}(u)$ is the number of unmatched u-clones at the conclusion of step $t-1$.

Rejection

We reject $e_{t}=\left\{u_{t}, v_{t}\right\}$ with probability

$$
1-\frac{d_{t-1}\left(u_{t}\right) d_{t-1}\left(v_{t}\right)}{\Lambda_{t-1}^{2}}
$$

where $\Lambda_{t-1}=\max _{u} d_{t-1}(u)$.

Theorem 14.1 Let $\log n \ll d \ll n^{1 / 3} / \log ^{2} n$ and $\varphi(d)$ be any function with $(d \log n)^{1 / 2} \leq \varphi(d) \ll d$. Then there is a joint distribution, or coupling, on $\left(G, G_{d}, G U H\right)$ such that
(1) The distribution of G_{d} is that of the uniform random d-regular graph on n vertices. The distributions of G and H are those of the Erdős-Rényi random graphs with edge probability $\frac{d}{n}\left(1-O\left(\left(\frac{\log n}{d}\right)^{1 / 3}\right)\right)$ and $O\left(\frac{\varphi(d)}{n}\right)$, respectively. Moreover, G is a random subgraph of $G U H$ with edge probability
$p_{G}=1-O\left(\frac{\varphi(d)}{d}+\left(\frac{\log n}{d}\right)^{1 / 3}\right)$.
(2)

$$
\operatorname{Pr}\left[H \subseteq G_{d}\right]=1-o(1)
$$

$$
\begin{equation*}
\operatorname{Pr}\left[\Delta\left(G_{d} \backslash(G \cup H)\right) \leq \frac{(1+o(1)) \log n}{\log (\varphi(d) / \log n)}\right]=1-o(1) \tag{3}
\end{equation*}
$$

especially, for $d=n^{\nu}$ with $0<\nu<1 / 3$ and $\varphi(d)=d / \log \log n$,

$$
\operatorname{Pr}\left[\Delta\left(G_{d} \backslash(G U H)\right) \leq \frac{1+o(1)}{\nu}\right]=1-o(1)
$$

where $\Delta(F)$ is the maximum degree of F.
Proof idea. For $t=1, \ldots, d n / 2+12 \varphi(d) n$, take i.i.d uniform random edges $e_{t}:=\left\{u_{t}, v_{t}\right\}$ of K_{n}. We also take i.i.d uniform random numbers a_{t} and let $\xi=(\log n / d)^{1 / 3}$. Suppose we have $G(t-1), M(t-1), H(t-1)$ after step $t-1$. Then, for $t_{1}:=d / 2-\left(300 / \xi^{2}\right) n \log n$,

$$
\begin{gathered}
G(t)=G(t-1) \cup\left\{e_{t}\right\} 1\left(a_{t} \geq \xi\right) 1\left(t \leq t_{1}\right), \\
H(t)=H(t-1) \cup\left\{e_{t}\right\} 1\left(e_{t} \notin G(t)\right),
\end{gathered}
$$

and, for the rejection probability

$$
p_{t}\left(e_{t}\right):=1-\frac{d_{t-1}\left(u_{t}\right) d_{t-1}\left(v_{t}\right)}{\Lambda_{t-1}^{2}}
$$

Suppose we have $G(t-1), M(t-1), H(t-1)$ after step $t-1$. Then, for $t_{1}:=d n / 2-\left(300 / \xi^{2}\right) n \log n$,

$$
\begin{gathered}
G(t)=G(t-1) \cup\left\{e_{t}\right\} 1\left(a_{t} \geq \xi\right) 1\left(t \leq t_{1}\right), \\
H(t)=H(t-1) \cup\left\{e_{t}\right\} 1\left(e_{t} \notin G(t)\right),
\end{gathered}
$$

and, for the rejection probability

$$
p_{t}\left(e_{t}\right):=1-\frac{d_{t-1}\left(u_{t}\right) d_{t-1}\left(v_{t}\right)}{\Lambda_{t-1}^{2}}
$$

$$
M(t)=M(t-1) \cup\left\{\left(u_{t}, i\right),\left(v_{t}, j\right)\right\} 1\left(e_{t} \text { is suitable }\right) 1\left(a_{t} \geq p_{t}\left(e_{t}\right)\right)
$$

where $\left(u_{t}, i\right),\left(v_{t}, j\right)$ are chosen uniformly at random among all unmatched u_{t}-clones and v_{t}-clones, respectively.
Clearly, $\widetilde{M}(t) \subseteq G(t) \cup H(t)$, and, provided $\max _{e} p_{t}(e) \leq \xi$ for all $t=1, \ldots, t_{1}$,

$$
G(t) \subseteq \widetilde{M}(t)
$$

Thus, it is enough to show that
(1) With high probability, $\max _{e} p_{t}(e) \leq \xi$ for all $t=1, \ldots, t_{1}$, and
(2) With high probability, the matching $M(d n / 2+12 \varphi(d) n)$ is almost perfect, i.e., it leave only few clones unmatched.
(Recall $t=1, \ldots d n / 2+12 \varphi(d) n$.)

