1  Poisson Cloning Models

Theorem (K) Supercritical region: Let p = = with
e>n"3 and 1 < a < (£3n)1/2. Then

“W(n p) —O0.n| > a(g)lm} < 2e~ U,

Luczak, 1990: With probability 1 — O((e3n)~1/9),

W (n,p) — 6.n] < 0.2n%3,

(Notice that (2 )12 <« n?3)




Theorem (K) Subcritical region: Suppose A =1 — ¢
with n1/? <« ¢ < 1, then,
log(e’n) — 2.5loglog(e’n) + ¢

—(g +log(1 —¢))

Pr|W(n,p) >

and
log(e’n) — 2.51oglog(e’n) — ¢
—(e +log(1 —¢))

Pr|W(n,p) <

for a positive constant ¢ > 0.

1mproving

log(e°n) _

2- )

for o > max{e,log™?(e%n)}.




We may also define the Poisson Cloning Models for

Random k-uniform hypergraphs
Random k-SAT Problems

Random Directed Graphs




Similar analyses are possible using PCM
and COLA for

e The k-core problem for hypergraph
(Pittel-Spencer-Wormald, ...)

e Structures of the giant component:

e.g. # of vertices of degree 1 > 2
(Luczak, Pittel, ...)
e Strong component of the random directed graph

(Karp, ...)

e Pure literal rule for random k-SAT problems
(Broder-Frieze-Upfal, ...)




And more

e Unit clause algorithm for random A-SAT problems
(Chao-Franco, ...)

e Karp-Sipser Algorithm

(Karp-Sipser, Aronson-Frieze-Pittel, ...)

e Giant Component of
HUG(n,p)

for a fixed graph H. (K-Spencer)




The k-core Problem

A k-core of a graph is a largest subgraph
with minimum degree at least k

(due to Bollobas).

Pittel, Spencer & Wormald (’96):
For random graph G(n, p) and

AL = min s :

p>0 P(pvk_l)

where

P(p,k —1):=Pr (Poi(p) >k — 1) =e’




If k > 3,

(

0 if A<, —n™°
1 ifA> A +n°,

Pr [G(n, A/(n —1)) has a k-core } —

\

for any ¢ € (0,1/2), and
Pr [either dno k-core or 3 k-core of size > (1 — n_‘s))\Zn}

— 1.

Recall,

A = Mmi .
©T 0 Plp k- 1)

(improving Luczak’s result).




C. Cooper (> ’02): Simpler proof for

Pr [G(n, A/(n — 1)) has a k-core | — 4




(K) For Poisson Cloning Model Gpc(n,p) and k > 3,
Pr [Gpc(n, A/(n —1)) has a k-core } —

y

0 ifA —A> n~1/2
1 if A=A >n"1/2

\

Pr [either 4 no k-core or

3 k-core of size > (1 — (w(n)n) ") Ain| = 1—o(1),

for any w(n) — oo. Recall,

A = mi :
©T 0 Plp,k - 1)




We will be

solving the problem as well as

generating Gpc(n,p).

(Recall p=X/(n —1)).
At step O,

A vertex v is light if d(v) < k,

or the number of v-clones is less than k.

It is heavy, otherwise.

Take a light clone w and

then choose the largest clone except w.




We will be

solving the problem as well as

generating Gpc(n,p).

In general, at step 1,

A vertex v is light if

the number of unmatched v-clones is less than k.
It is heavy, otherwise.

Take a unmatched light clone w and

then choose the largest unmatched clone except w.




¢ Poisson Cloning Model Gpc(n,p): Definition

Take i.i.d Poisson random variables d(v)’s, v € V, with

mean \ = p(n — 1),

then, for each v € V', take d(v) copies, or clones, of v.
If >, d(v) is even,

generate a (uniform) random
perfect matching on the set of all clones

and then contract clones of the same vertex.

If > ,cv d(v) is odd, generate a perfect match excluding a

clone and a loop.




e Fquivalently,

take a Poisson An random variable M and M unlabelled
clones. Then, independently label each clone by v chosen

uniformly at random among all vertices {1,...,n}.

It M is even,

generate a (uniform) random

perfect matching on the set of all clones

and then contract clones of the same vertex.

If M is odd, generate a pertect match excluding a clone

and a loop.




e Or, take a Poisson An random variable M, and M,
unlabelled clones. Assume that these clones are ordered.
Take the first two clones and match them. Then, label

those two clones uniformly at random.

It M is even,

this will generate a (uniform) random

perfect matching as well as a valid labelling.

If M is odd, ...




G(TL, p) VS. GPC(”? p)

Theorem (K) If pn = O(1), then there are positive

constants ¢, and ¢, so that for any collection G of
SIMPLE graphs

¢, Pr[Gpo(n, p) € G] — e M) < Pr[G(n,p) € G,

and
Pr[G(n,p) € G < c,(Pr{Gpe(n,p) € G]) + e 20,
In particular,

Pr[G(n,p) € G] — 0 iff Pr[Gpc(n,p) € G
Pr[G(n,p) € G| — 1 iff Pr[Gpe(n,p) € G]




Proof. For A = p(n — 1) and a fixed simple graph G

with m edges,

Pr|Gpc(n,p) = G
= PrlMy = 2m] - (m21)((m — D21 -+ (121
e (An)*™" 2Mm!

(2m)!  n?m

(14 O(
(1+ O(
(14 O(

) (dmm)* (2
) (m) 222 ((2mm) ()
) ()22 ()
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m
1
m
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m




Using
(1+ O(%))(7Tm)_1/222”1(777/!)2

we have

e (An)?m 2Mp!
(2m)!  n?m

Pr|Gpc(n,p) = G]

)\n/2(7n)

Aym —In/24+0(=x) (T‘-m>1/2
()"e "
m!

On the other hand, A = p(n — 1) yields,

Pr[G(n,p) =G] = p )=
(

A )’m —An/24+pm—p?n?/44+0O(p?*m+p3n?)
n—1 )




Take the smallest ¢,,¢, > 0 such that, if m < An/2 — £,
or m > An/2 + {5, then

(271‘)\72)1/26_>‘n/2()\7n>m

- < Pr[Gpc(n,p) € G]'? +e

It is easy to check that ¢,,¢, < c¢n for a constant c
independent of Pr|Gpc(n,p) € G]. We consider

Pr[G(n,p) € G] = > Pr[G(n,p) = G]

Geg
—£1<|Gl=An/2<L,

+ >, Pi[G(n,p) =G

Geg
|GI<An/2—£,

+ > Pr[G(n,p) =G].

Geg
|GI>An/2+£,




First,

Pr[Gpc(n,p) € G
> > Pr|Gpc(n,p) = G]

Geg
—£1<|G|—>\n/2<£2

> ¢! Y PrlG(n,p) = G]Pr[Gro(n,p) € G

1
Geg
—£1<|G|=An/2<L,

gives

> Pr[G(n,p) = G] < ¢, Pr[Gpc(n,p) € G]M2.

Geg
—41 <|G|=An/2<L,




Second, by p(é‘) = An/2 it is easy to check that

> Pr[G(n,p)=G] < >  Pr [Bln(<g>7p)

Geg _
Gl<am et <An/2—1L,

<e¢, Y  Pr[Poi(An/2) =¢].

(<An/2—£,

Ex 1. Pr[Bin(m,p) = /] = O(eo(me) Pr[Poi(pm)] = Z])

2a. > Pr[Poi(An/2) = (]

(<An/2—0,
= (14 o(1))(mAn) /2 Pr[Poi(A\n/2) = An/2 — £,]




Similarly,

>  Pr[G(n,p)=G] < >  Pr [Bm((Z),p) = 4

>
Gl e, 0> n/2+L,

<c

— 3

> Pr[Poi(An) = /]

>An /244,

> Pr[Poi(Mn/2) =/

(>An/2+L,
= (14 o(1))(wAn)Y? Pr[Poi(An/2) = An/2 + ¢,]




2 Cut-Off Line Lemma

For 6 in the range 0 < 6 < 1, let A(f) be the cut-off value
when (1 — 6%)An or more clones are matched for the first
time. Conversely, let N(6) be the number of matched
clones until the cut-off line reaches 6.

Lemma 1 (Cut-off Line Lemma) For 6, < 1 uniformly
bounded below from 0 and 0 < A < n,

—(min A%
Pr[ max [A(0) — A > 2] < 2¢ BTl

0:0, <0<1
and

_ 2
Qmin{A, 7577 )

Pr| max |N(6)—(1-6%)An| > A| <2¢

0:0, <0<1




