Expander codes revisited: AWGN channels and high rates

Souvik Dihidar, Steven McLaughlin, and Prasad Tetali

Georgia Institute of Technology

Atlanta, GA 30318, U.S.A

Email:{dihidar,swm}@ece.gatech.edu

Abstract

In this paper we consider the use of expander codes for AWGN channels. In previous work, it has been shown [2][1][4] that, codes based on bipartite expander graphs perform well for the binary symmetric and binary erasure channels. Here we characterize and study bipartite expander codes with Hamming codes as constituent codes for the AWGN channel and show that their thresholds are close to capacity for high code rates. We also give a new upper bound on the rate of expander codes, and see how this relates to product codes which are popular low complexity turbo-like codes.

I. Introduction

The expander codes considered in this paper were defined in [2]. These codes are constructed using expander graphs, where edges are the bits and nodes are the constraints (i.e. codes) that the bits have to satisfy. Figure 1a shows a bipartite expander graph, in which all constituent codes (at the nodes) are the same
[image: image1.wmf])

,

(

k

d

linear block code with
[image: image2.wmf]d

as the length of codewords, and
[image: image3.wmf]k

 as the length of messages. A natural approach (and the one we follow here) for decoding is to decode the constituent codes using some soft-in, soft-out decoder and then to pass messages along the edges that connect the nodes as shown in Figure 1b. Messages are the log-likelihood ratios (LLR) on the bits (edges). Incoming messages in a constraint node are combined using the BCJR algorithm [8] on the Wolf trellis for the
[image: image4.wmf])

,

(

k

d

code. Extrinsic output information is passed on the edges to neighboring nodes for the next iteration.

In expander graphs, every set of nodes expand (in terms of the number of neighbors) by a factor which is at least as big as an expression determined by the second largest eigenvalue
[image: image5.wmf])

(

l

of the adjacency matrix of the graph. The lower the value of
[image: image6.wmf]l

is, the better is the expansion, and the better is the code. See [2] and [1] for the BSC. In this paper, it is argued that the same conclusion holds (for a certain class of expander codes) for AWGN channels. A new upper bound on rate is presented here, and a trade-off between achievable rate and decoding performance is discussed. We also point out that, conventional product codes are an extreme case of this trade-off.
II. Expander Codes over AWGN Channels

In this section, we discuss thresholds of expander codes. It is important to note that it can be difficult to do a density-evolution analysis (as introduced in [5]) on a BCJR decoder for a general
[image: image7.wmf])

,

(

k

d

code. The purpose of this section is to show that EXIT chart analysis [3] can be used to model the behavior of iterative decoding for expander codes quite accurately for a certain type of
[image: image8.wmf])

,

(

k

d

codes. The motivation is that, since computing probability density functions is difficult if not impossible, a quantity (such as mutual information) that is a function of the probability density functions may turn out to be sufficient for analysis in some cases such as the following.

Let
[image: image9.wmf]1

,..,

1

,

0

),

(

-

=

d

i

i

LLR

denote the extrinsic output LLR’s when a
[image: image10.wmf])

,

(

k

d

code is decoded using BCJR. In the following discussion, this
[image: image11.wmf])

,

(

k

d

code is assumed to be a cyclic, distance-invariant code, such that the binary complement of every codeword is also a codeword. The channel is assumed to be symmetric and iid. All transmitted codewords are considered to be equally likely. Then, the following results can be obtained.
Lemma 1: Let
[image: image12.wmf]i

P

and
[image: image13.wmf]i

Q

be respectively the sets of codewords where the
[image: image14.wmf]th

i

bit is 0 and 1, then

[image: image15.wmf]i

P

c

c

c

l

i

LLR

pr

c

l

i

LLR

pr

Î

"

=

=

=

2

,

1

},

2

/

)

(

{

}

1

/

)

(

{

, and
[image: image16.wmf]i

Q

c

c

c

l

i

LLR

pr

c

l

i

LLR

pr

Î

"

=

=

=

2

,

1

},

2

/

)

(

{

}

1

/

)

(

{

,

for any distance-invariant
[image: image17.wmf])

,

(

k

d

code, where
[image: image18.wmf]1

c

 and
[image: image19.wmf]2

c

 are the transmitted codewords.
Observation 1: Let the code
[image: image20.wmf])

,

(

k

d

be such that, the binary complement of a codeword
[image: image21.wmf]c

is also a codeword. Let
[image: image22.wmf]'

c

be the complement of
[image: image23.wmf]c

. If
[image: image24.wmf]c

and
[image: image25.wmf]'

c

 are the transmitted codewords, then it is easy to show that,
[image: image26.wmf]1

,...,

1

,

0

),

'

/

)

(

{

}

/

)

(

{

-

=

"

-

=

=

=

d

i

c

l

i

LLR

pr

c

l

i

LLR

pr

.
Lemma 2: Let
[image: image27.wmf]1

,..,

1

,

0

),

(

-

=

d

i

i

c

be the transmitted bits for a codeword
[image: image28.wmf]c

in a cyclic code. Then, the probability distribution function, averaged over all codewords, on the
[image: image29.wmf]th

i

extrinsic output LLR,
[image: image30.wmf]}

)

(

{

l

i

LLR

pr

=

, is the same for all
[image: image31.wmf]1

,..

1

,

0

,

-

=

d

i

i

.

Observation 2: Along the line of the proof of lemma 2, it can also be shown that, if
[image: image32.wmf]i

P

c

Î

1

and
[image: image33.wmf]j

P

c

Î

2

, (
[image: image34.wmf]i

P

is defined in lemma 1) then,
[image: image35.wmf]}

2

/

)

(

{

}

1

/

)

(

{

c

l

j

LLR

pr

c

l

i

LLR

pr

=

=

=

. Similar is the case for codewords in
[image: image36.wmf]i

Q

and
[image: image37.wmf]j

Q

.

Observation 3: Lemma 1, observation 1, and observation 2 imply that, the mutual information between the transmitted bit and the extrinsic output LLR is the same for all bit positions and for all transmitted codewords. Since, all codewords are equally likely, the average mutual information is also the same.

EXIT charts can be used to predict threshold values for concatenated codes [3]. The lowest value of noise power, for which the mutual information curve intersects its inverted version (as described in [3]) is presumed to be an estimate of the threshold of the code. In the following discussion, we argue two points: (1) the threshold predicted from the EXIT chart of a
[image: image38.wmf])

,

(

k

d

code is an upper bound on the threshold of an expander code constructed with that
[image: image39.wmf])

,

(

k

d

code as the constraint at the nodes, and (2) the expansion property of the graph is important for near ML performance of the iterative decoder. We assume that the extrinsic output LLR’s are Gaussian distributed.

Observation 3 implies that, the output LLR’s after any iteration is the same for all edges (it can be lower than the predicted value for some edges because of correlation, as discussed later). If channel noise is more than the threshold predicted from the EXIT chart, the mutual information on every edge cannot approach 1 even after an infinite number of iterations. Hence, the probability of error will be non-zero in that case. Thus, the threshold predicted from the EXIT chart is an upper bound on the threshold of the actual expander code.

The BCJR algorithm, when applied iteratively in a graph with cycles, is not ML. In a graph with cycles, the extrinsic output mutual information after any iteration is going to be less than what is predicted by the EXIT chart. Thus, the mutual information trajectory (as introduced in [3]) is going to deviate from the predicted trajectory. So, actual thresholds are going to be less than what is predicted by the EXIT chart. It seems intuitive that, if there are more cycles in the graph, the trajectory will deviate more and threshold values will go further down. This can be looked at in another way from the expander graph perspective.

 At any iteration, a set
[image: image40.wmf]P

 of nodes on one side will have apriori LLR’s coming in from all of its neighbors,
[image: image41.wmf])

(

P

N

. All the nodes in
[image: image42.wmf]P

 can be thought of as a supernode. The EXIT chart for this supernode is the same as any node in the graph. But now, this supernode will have multiple edges coming in from some nodes in
[image: image43.wmf])

(

P

N

. Extrinsic output LLR’s on multiple edges of any node are correlated with each other. Hence, the number of edges each node in
[image: image44.wmf])

(

P

N

 has incident on the set
[image: image45.wmf]P

 is a measure of undesired correlation introduced by that node. The average degree of nodes in
[image: image46.wmf])

(

P

N

 in the subgraph induced by
[image: image47.wmf]P

 and
[image: image48.wmf])

(

P

N

is also a crude measure of how much correlation the nodes in
[image: image49.wmf]P

 will encounter during each iteration.

 It turns out that, if the size of
[image: image50.wmf]P

 is small compared to the size of the graph, the average degree
[image: image51.wmf])

(

t

of the neighbors of
[image: image52.wmf]P

 can be bounded from above and the bound is independent of the size of
[image: image53.wmf]P

. The following lemma shows that.

Lemma 3:
[image: image54.wmf]d

d

t

)

(

l

l

-

-

£

.

This means, as
[image: image55.wmf]l

decreases, so does
[image: image56.wmf]t

. Hence, the correlation in the apriori input decreases in the next iteration. Thus BCJR (when applied iteratively) will be closer to the ML decoding algorithm.
III. Rate of Expander Codes

A well-known lower bound on the rate of expander codes
[image: image57.wmf])

(

R

is,
[image: image58.wmf]1

2

-

³

r

R

[2], where
[image: image59.wmf]

r

=

k

/

d

 is the rate of the constituent code. Here, we present a new upper bound on
[image: image60.wmf]R

 using the bipartite nature of the graph. It is assumed that no multi-edges are present in the graph.

Theorem 1:
[image: image61.wmf]2

r

R

£

, where
[image: image62.wmf]d

k

r

=

.

This gives rise to the possibility of a rate
[image: image63.wmf]R

, which is more than the guaranteed lower bound
[image: image64.wmf]1

2

-

r

. It seems to be the case that, the higher the value of
[image: image65.wmf]l

, the closer
[image: image66.wmf]R

 can be to
[image: image67.wmf]2

r

. For the special case of a one error-correcting Hamming code as the constraint code at the nodes, a necessary condition for that to happen is stated below.

Lemma 4: For a one error-correcting
[image: image68.wmf])

,

(

k

d

Hamming code, if
[image: image69.wmf]2

1

+

£

d

l

, then no rate increase is possible.

It is well-known that, for any graph
[image: image70.wmf]1

2

-

³

d

l

. The first explicit expander graph, which achieves this lower bound was given in [7]. This, together with lemma 3 and 4, gives rise to the possibility of a rate-decoding performance trade-off.

In case of a conventional product code this upper bound is achieved. If the Expander Graph is obtained by simply putting together
[image: image71.wmf]

n

/

d

 copies of the
[image: image72.wmf]d

d

´

product graph (when
[image: image73.wmf]n

d

|

), then the resulting code will have rate
[image: image74.wmf]2

r

. But, such a graph will not be a good expander (first
[image: image75.wmf]d

n

 eigen values will be equal to
[image: image76.wmf]d

), and according to lemma 3, such a graph will have worse threshold performance.

IV. Simulation Results and Conclusion

1. An expander code of length 65,535 was simulated over a binary-input AWGN channel. This code uses the (15,11) Hamming code as the constraint at the nodes. This implies that the rate of this code is between 0.47
[image: image77.wmf])

1

2

(

-

r

 and 0.53
[image: image78.wmf])

2

(

r

. Hence, the capacity of this code is between 0.04 dB and 0.36 dB. The predicted threshold from EXIT chart analysis is 1 dB (at rate 0.47) and 0.42 dB (at rate 0.53). The all-zero codeword was transmitted 500 times for each value of SNR. A maximum of 30 iterations were done in the decoder. The simulated BER-SNR plot is shown in Figure 2. This code is anywhere between 0.36 dB and 0.68 dB away from capacity at BER
[image: image79.wmf]»

10-5.

2. An Expander Code of length 131,040 was simulated over a binary-input AWGN channel. This code uses the (63,57) Hamming code as the constraint at the nodes. This implies that the rate of this code is between 0.80
[image: image80.wmf])

1

2

(

-

r

and 0.81
[image: image81.wmf])

2

(

r

, which, in turn, implies that the capacity of this code is at about 2.18 dB. EXIT chart analysis predicts the threshold to be about 2.54 dB. The all-zero codeword was transmitted 300 times for each value of SNR. A maximum of 30 iterations were done in the decoder. No errors were seen at 2.65 dB. That means, this code is about 0.47 dB away from capacity. Figure 3 shows the performance of this code. For comparison purposes, the BER-SNR performance of a
[image: image82.wmf])

57

,

63

(

)

57

,

63

(

´

product code is also shown. This code has length 3,969. This code, as can be seen in Figure 3, is about 1.35 dB away from capacity (
[image: image83.wmf]18

.

2

»

.dB) at BER=10-5. Hence, the performance of this expander code is clearly superior to this conventional product code using the same constraint code at the nodes.
IV.1 Conclusion

It appears that Expander codes are good high-rate codes. Unlike LDPC, there is an upper bound (theorem 1) on the rate of these codes. We also pointed out that, there is a possible trade-off between achievable rate and decoding performance. It can be seen in the case of the (15,11) constituent code, where the gap between capacity and the EXIT chart-predicted upper bound on threshold actually decreases at higher rate. But, as rate increases, the actual threshold will be further below the upper bound due to correlation (implied by lemma 3 and 4).

It appears that, for expander codes, iterative decoding does better (in terms of being close to the ML decoder). Hence, with a good trade-off between good minimum distance,rate, and performance of iterative decoding, expander codes may outperform LDPC. The results shown in this paper were obtained on randomly constructed expander graphs, but using techniques for constructing good expanders [6], much better performance can be expected (in terms of being close to the EXIT chart-predicted threshold), especially in low-rate cases. Future work should include construction of Expander Codes on better expander graphs and possibility of irregular Expander Codes.
[image: image87.emf]

1

[image: image84]
[image: image88.emf]

1

[image: image89.emf]

1

 [image: image85.png]BER->

length B5 535 code with (15,11) Haming code as constraint

2] [1 2
SNR(EL/MNG)->

Figure 2: An expander code of length 65,535 with (15,11) Hamming code as constraint code.

This code has rate between 0.47 and 0.53. Capacity is between 0.04 dB and 0.36 dB.

Predicted threshold from EXIT chart is 1 dB (at rate 0.47) and 0.42 dB (at rate 0.53).
 [image: image86.png]BER->

Cormparing conventional product codes and expander codes

—+ expander code
& product code

Figure 3: An expander code of length 131,040 and a conventional product code of length 3,969

are shown. Both use the (63,57) Hamming code. Both are of rate about 0.8. The product

code is about 1 dB worse than the expander code. The threshold predicted from EXIT

chart for both codes is at about 2.54 dB. The expander code is about 0.11 dB away

from this threshold and about 0.47 dB away from capacity (2.18 dB).
References:
[1] M. Sipser and D. Spielman, “Expander codes”, IEEE Trans. Inform. Theory, vol. 42, pp. 1710-

 1722, Nov. 1996.
[2] G. Zemor, “On expander codes”, IEEE Trans. Inform. Theory, vol. 47, pp. 835-837, Feb.

 2001.

[3] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes”,

 IEEE Trans. Inform. Theory, vol. 49, pp. 1727-1737, Oct. 2001.
[4] A. Barg and G. Zemor, “Error exponents of expander codes”, IEEE Trans. Inform. Theory, vol.

 48, pp. 1725-1729, June 2002.

[5] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under

 message-passing decoding”, IEEE Trans. Inform. Theory, vol. 47, pp. 599-618, Feb. 2001.

[6] O. Reingold, S. Vadhan, and A. Wigderson, “Entropy waves, the zigzag graph product, and

 new constant-degree expanders and extractors”, Proceedings of the 31st Annual Symposium

 on Foundations of Computer Science, pp. 3-13, Nov. 2000.
[7] A. Lubotsky, R. Philips, and P. Sarnak, “Ramanujan graphs”, Combinatorica, vol. 8, no. 3, pp.

 261-277, 1988.

[8] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optical decoding of linear codes for minimizing symbol error rate”, IEEE Trans. Inform. Theory, pp. 284-287, March 1974.

n

2

1

n

2

1

d

2

1

d

2

1

d

2

1

d

�2

1

d

�2

1

d

�2

1

Figure 1a: A bipartite expander graph on 2n

vertices using a (d,k) constraint

bit 1

bit 2

bit d

incoming message

outgoing message

constraint node

Figure 1b: Soft-in, soft-out decoding at a constraint node

PAGE
2

_1130877658.unknown

_1131217378.unknown

_1131660701.unknown

_1131708667.unknown

_1131708718.unknown

_1131708852.unknown

_1131721848.unknown

_1131721877.unknown

_1131708726.unknown

_1131708708.unknown

_1131708307.unknown

_1131708320.unknown

_1131708535.unknown

_1131662214.unknown

_1131662294.unknown

_1131662149.unknown

_1131659064.unknown

_1131660316.unknown

_1131660329.unknown

_1131660686.unknown

_1131659578.unknown

_1131659591.unknown

_1131659564.unknown

_1131218938.unknown

_1131219587.unknown

_1131231606.unknown

_1131565237.unknown

_1131220053.unknown

_1131223916.unknown

_1131219013.unknown

_1131219556.unknown

_1131219571.unknown

_1131218999.unknown

_1131218879.unknown

_1131218912.unknown

_1131217391.unknown

_1131209900.unknown

_1131210985.unknown

_1131215985.unknown

_1131215996.unknown

_1131210999.unknown

_1131209921.unknown

_1130878651.unknown

_1131208791.unknown

_1130878176.unknown

_1130878000.unknown

_1130873977.unknown

_1130874134.unknown

_1130874200.unknown

_1130874988.unknown

_1130875070.unknown

_1130875969.unknown

_1130877560.unknown

_1130875755.unknown

_1130875084.unknown

_1130875013.unknown

_1130875059.unknown

_1130875003.unknown

_1130874372.unknown

_1130874408.unknown

_1130874481.unknown

_1130874397.unknown

_1130874268.unknown

_1130874161.unknown

_1130874172.unknown

_1130874147.unknown

_1130874044.unknown

_1130874068.unknown

_1130874080.unknown

_1130874056.unknown

_1130874007.unknown

_1130874029.unknown

_1130873992.unknown

_1130873673.unknown

_1130873950.unknown

_1130873964.unknown

_1130873691.unknown

_1130873403.unknown

_1130873444.unknown

_1005110411.unknown

_1130873387.unknown

_1005110356.unknown

