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Abstract

We establish the existence of free energy limits for several sparse random hypergraph models
corresponding to certain combinatorial models on Erdés-Rényi graph G(N,¢/N) and random 7-
regular graph G(N, r). For a variety of models, including independent sets, MAX-CUT, Coloring and
K-SAT, we prove that the free energy both at a positive and zero temperature, appropriately rescaled,
converges to a limit as the size of the underlying graph diverges to infinity. In the zero temperature
case, this is interpreted as the existence of the scaling limit for the corresponding combinatorial
optimization problem. For example, as a special case we prove that the size of a largest independent
set in these graphs, normalized by the number of nodes converges to a limit w.h.p., thus resolving
an open problem, (see Conjecture 2.20 in [Wor99], as well as [Ald],[BR],[JT08] and [ASO03]).

Our approach is based on extending and simplifying the interpolation method developed by Guerra
and Toninelli [GT02] and Franz and Leone [FL03],[FLT03]. Among other applications, this method
was used to prove the existence of free energy limits for Viana-Bray and K-SAT models on Erdos-
Rényi graphs. The case of zero temperature was treated by taking limits of positive temperature
models. We provide instead a simpler combinatorial approach and work with the zero tempera-
ture case (optimization) directly both in the case of Erdos-Rényi graph G(N,¢/N) and random
regular graph G(N,r). In addition we establish the large deviations principle for the satisfiability
property for constraint satisfaction problems such as Coloring, K-SAT and NAE-K-SAT. For exam-
ple, let p(c,q, N) and p(r, ¢, N) denote, respectively, the probability that random graphs G(V, ¢/N)
and G(N,r) are properly g-colorable. We prove the existence of limits of N~!logp(c,q, N) and
N~tlogp(r,q,N), as N — oo.
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1 Introduction

Consider two random graph models on nodes [N] = {1,..., N}, the Erdos-Rényi graph G(N,c/N) and
the random r-regular graph G(NV, 7). The first model is obtained by adding each edge of the N(N —1)/2
possible edges randomly independently with probability ¢/N, where ¢ > 0 is a constant (does not grow
with N). The second is a graph chosen uniformly at random from the space of all r-regular graphs on N
nodes, where the integer r is a fixed constant. It is straightforward to see that |Zy| grows linearly with
N. Tt was conjectured in several papers including Conjecture 2.20 in [Wor99], [GNS06], [BR], as well
as [JTO8] and [AS03] that the limit limy |Znx|/N exists with probability one as N — oo. (Additionally,
this problem was listed by D. Aldous as one of his six favorite open problems [Ald]. For a new collection
of Aldous’ favorite open problems see [AldNew]). The fact that the actual value of |Zxy| concentrates
around its mean follows from a standard Azuma-type inequality. However, a real challenge is to show
that the expected value of |Zx| normalized by N does not fluctuate around different values, for large
N.

This conjecture is in fact just one of a family of similar conjectures. Consider, for example, the
random MAX-K-SAT problem - the problem of finding the largest number of satisfiable clauses of size
K in a uniformly random instance of a K-SAT problem on N variables with ¢N clauses. This problem
can be viewed as an optimization problem over a sparse random hypergraph. A straightforward argument
shows that at least 1 — 27X fraction of the clauses can be satisfied with high probability (w.h.p.). It
was conjectured in [CGHS04] that the proportion of the largest number of satisfiable clauses has a limit
w.h.p. as N — oco. As a third example, consider the problem of partial g-coloring of a graph: finding
a g-coloring of nodes which maximizes the total number of properly colored edges. It is natural to
conjecture again that value of this maximum has a scaling limit w.h.p. (though we are not aware of any
papers explicitly stating this conjecture).

Recently a powerful rigorous statistical physics method was introduced by Guerra and Toninelli [GT02]
and further developed by Franz and Leone [FL03], Franz, Leone and Toninelli [FLT03], Panchenko and
Talagrand [PT04], Montanari [Mon05], Kudekar and Macris [KMO06]. The method is based on an in-
genious interpolation between a random hypergraph (spin glass) model on N nodes on the one hand,
and a disjoint union of random hypergraph models on N; and Ny nodes, on the other hand, where
N = Nj + Ns. Using this method it is possible to show for certain random hypergraph models that
when one considers the expected log-partition function, the derivative of the interpolation function has
a definite sign at every value of the interpolation parameter. As a result the expected log-partition func-
tion of the N-node model is larger (or smaller depending on the details of the model) than the sum of the
corresponding expected log-partition functions on N7 and Ne-node models. This super(sub)-additivity
property is used to argue the existence of the (thermodynamic) limit of the expected log-partition
function scaled by N. From this the existence of the scaling limits for the ground states (optimization
problems described above) is also shown by taking a limit as positive temperature approaches zero
temperature. In [FLO3], the method was used to prove the scaling limit of log-partition functions cor-
responding to random K-SAT model for even K (and the so-called Viana-Bray models with random
symmetric Hamiltonian functions.) After the publication of this paper, it was realized by Maneva and
Montanari [FM] that the same argument applies to the case of odd K without much change. The idea
of using super- and sub-additivity for proving the existence of scaling limits goes back to classical pa-
pers by Beardwood, Halton and Hammersley [BHH59] for random planar Traveling Salesman Problem,
and Hammersley and Welsh [HW65] for showing the existence of limiting constants in the first passage
percolation problem. It also used to show the existence of the limit of scaled log-partition functions for
statistical mechanics models on lattices [Geo88],[Sim93].

Results and technical contributions. The goal of the present work is to simplify and extend the
applicability of the interpolation method, and we do this in several important ways.

e First, we extend the interpolation method to a variety of models on Erdos-Rényi graphs not



considered before. Specifically, we consider independent set, MAX-CUT, Ising model, graph
coloring (henceforth referred to as Coloring), K-SAT and Not-All-Equal K-SAT (NAE-K-SAT)
models. The coloring model, in particular, is of special interest as it becomes the first non-binary
model to which interpolation method is applied.

e Second, we provide a simpler and a more combinatorial interpolation scheme as well as analysis.
Moreover, we treat the zero temperature case (optimization problem) directly and separately
from the case of the log-partition function, and again the analysis turns out to be substantially
simpler. As a result, we prove the existence of the limit of the appropriately rescaled value of
the optimization problems in these models, including independent set problem, thus resolving an
open problem earlier stated.

e Third, we extend the above results to the case of random regular graphs (and hypergraph ensem-
bles, depending on the model). The case of random regular graphs has been considered before
by Franz, Leone and Toninelli [FLTO03] for the K-SAT and Viana-Bray models with even num-
ber of variables per clause, and Montanari [Mon05] in the context of bounds on the performance
of certain low density parity check (LDPC) codes. In fact, both papers consider general degree
distribution models. The second of these papers introduces a more complicated multi-phase in-
terpolation scheme. In this paper we consider a modification of the interpolation scheme used
in [FLT03] and apply it to the same six models we are focusing in the case of Erdés-Rényi graph.

e Finally, we prove the large deviation principle for the satisfiability property for Coloring, K-SAT
and NAE-K-SAT models on Erdds-Rényi graph in the following sense. A well known satisfiability
conjecture [Fri99] states that for each of these models there exists a (model dependent) critical
value ¢* such that for every € > 0, when the number of edges (or clauses for a SAT-type problem)
is at most (¢* — €)N, the model is colorable (satisfiable) w.h.p. and when it is at least (¢* + €)N,
it is not colorable (not satisfiable) w.h.p. as N — oo. Friedgut [Fri99],[AF99] came close to
proving this conjecture by showing that these models exhibit sharp phase transition: there exists
a sequence cj such that for every €, the model is colorable (satisfiable) w.h.p. as N — oo when
the number of edges (clauses) is at most (cj — €)N and is not colorable (satisfiable) w.h.p. when
the number of edges (clauses) is at least (cj +€)N. It is also reasonable to conjecture, and indeed
is known [CGHS04]| for the case K = 2, that not only the satisfiability conjecture is valid, but,
moreover, the probability of satisfiability p(c, N) decays to zero exponentially fast when ¢ > c¢*.
In this paper we show that for these three models, namely Coloring, K-SAT and NAE-K-SAT,
the limit 7(c) £ limy_oo N 'logp(c, N) exists for every c¢. Namely, while we do not prove the
satisfiability conjecture and exponential rate of convergence to zero of the satisfiability probability
above the critical threshold, we do prove that if the convergence to zero occurs exponentially fast,
it does so at a well-defined rate. Assuming the validity of the satisfiability conjecture and the
exponential rate of decay to zero above c¢*, our result implies that r(c) = 0 when ¢ < ¢* and
r(c¢) < 0 when ¢ > ¢*. Moreover, our results would imply the satisfiability conjecture, if one
could strengthen Friedgut’s result as follows: for every € > 0, p(cj + €, N) converges to zero
exponentially fast, where cj; is the same sequence as in Friedgut’s theorem.

Organization of the paper. The remainder of the paper is organized as follows. In the following
section we introduce the sparse random (Erdés-Rényi) and random regular (hyper)-graphs and introduce
various combinatorial models of interest. Our main results are stated in Section 3. The proofs for the
case of Erdos-Rényi graphs are presented in Sections 4 and 5. The proofs for the case of random
regular graphs are in section 6. In the Appendix, we state and prove a simple modification of a classical
super-additivity theorem - if a sequence is nearly super-additive, it has a limit after an appropriate
normalization.

Notations. We close this section with a few notational conventions. R(R) denotes the set of (non-
negative) real values and Z(Z. ) denotes the set of (non-negative) integer values. As before, [N] denotes



the set of integers {1,..., N}. Throughout the paper, we treat [N] as a set of nodes, and we consider
splitting this into two sets of nodes, namely [N;] = {1,...,N;} and {N; + 1,..., N}. For symmetry,
with some abuse of notation, it is convenient to denote the second set by [Na] where No = N — Nj.
Bi(N, 0) denotes binomial distribution with N trials and success probability §. Pois(c) denotes a Poisson
distribution with parameter c¢. A sequence of random variables X is said to converge to a random
variable X with high probability (w.h.p.) if for every € > 0, imy_.o P(|Xnx — X| > ¢€) = 0. This is the
usual convergence in probability.

2 Sparse random hypergraphs

Given a set of nodes [N], and a positive integer K, a directed hyperedge is any ordered set of nodes
(i1,...,ix) € [N]¥. An undirected hyperedge is an unordered set of K mnodes i1,...,ix € [N]. A
directed (undirected) K-uniform hypergraph on the node set [N] is a pair ([V], E), where E is any set
of directed (undirected) K-hyperedges £ = {e1,...,eg}. A graph is called simple if the nodes within
each edge e,,,1 < m < |E| are distinct and all the edges are distinct. A (directed or undirected) graph
is called r-regular if each node i € [IN] appears in exactly r edges. The necessary condition for such a
graph to exist is Nr/K € Z,. A degree A; = A;(G) of a node i is the number of edges containing i. A
matching is a set of hyperedges such that each node belongs to exactly one edge.

In order to address a variety of random models in a unified way, we introduce two random directed
hypergraph models, namely Erdés-Rényi model G(N, M), M € Z; and random regular graph model
G(N,r),r € Z. These two graph models, each consisting of N nodes, are described as follows. The first
model G(V, M) is obtained by selecting M directed hyperedges uniformly at random with replacement
from the space of all [N]¥ hyperedges. A variant of this is a simple Erdés-Rényi graph also denoted
for convenience by G(N, M), which is obtained by selecting M edges uniformly at random without
replacement from the set of all undirected hyperedges each consisting of distinct K nodes. In this paper
we will consider exclusively the case when M = [¢N]| and c is a positive constant (does not grow with
N). In this case the probability distribution of the degree of a typical node is Pois(c) + O(1/N). For
this reason we will also call it a sparse random Erdés-Rényi graph.

The second model G(N,r) is defined to be an r-regular directed K-uniform hypergraph generated
uniformly at random from the space of all such graphs. We assume Nr/K € Z,, so that the set of such
graphs is non-empty. A simple (directed or undirected) version of G(N,r) is defined similarly. In this
paper we consider exclusively the case when r is a constant (as a function of N) and we call G(N,r) a
sparse random regular graph.

From non-simple to simple graphs. While it is common to work with simple hypergraphs, for our
purpose it is more convenient to establish results for directed non-simple graphs first. It is well-known,
however, that both G(N, M) and G(N,r) graphs are simple with probability which remains at least a
constant as N — oo, as long as ¢, r, K are constants. Since we prove statements which hold w.h.p., our
results have immediate ramification for simple Erdds-Rényi and regular graphs.

It will be useful to recall the so-called configuration method of constructing the random regular
graph [Bol85], [Bol80], [Gal63]. To each node i associate r nodes denoted ji,...,jt. We obtain a new
set of Nr nodes. Consider a matching ey, ..., ey, /i generated uniformly at random on this set of nodes.
From this set of edges we generate a graph on the original N nodes by projecting each of the edge to
their representative. Namely an edge (i1, ...,ix) in the graph on N nodes is created iff there is an edge
in this set of the form ( j,ill, e ]Zf{ ) for some ki, ..., kg € [r]. The resulting graph is random r-regular
(not necessarily simple) graph, which we again denote by G(N,r). From now on when we talk about
configuration graph, we have in mind the graph just described on N7 nodes. It is known [JLROO0] that
with probability bounded away from zero as N — oo the resulting graph is in fact simple.



Given a hypergraph G = ([N], E) we will consider a variety of combinatorial structures on G, which
can be defined in a unified way using the notion of a Markov Random Field (MRF). The MRF is a
hypergraph G together with an alphabet x = [¢] = {0,1,...,¢} and a set of node and edge potentials
H;,i € [N],H.,e € E. A node potential is a function H; : [q] — R and an edge potential is a function
H, : [q]% — {—oc} UR. Given a MRF (G, x, H;, H.,i € [N],e € E) and any z € [¢]V, let

H(x)= Y Hi(x)+ Y He(ze), H(G)= sup H(z),
]

ie[N e€E z€[qlV

where z. = (x;,7 € e). Namely, H(z) is the value associated with a chosen assignment x and H is the
optimal value, or the groundstate in the statistical physics terminology. In many cases the node and
edge potentials will be random functions generated i.i.d. (see examples below).

Associated with an MRF is the Gibbs probability measure g on the set of node values [¢]" defined
as follows. Fix a parameter A > 0 consider the probability measure

)\H(a:)
xTr) =
pig () Za

to every assignment x € [¢]", where Zg = Yo M (@) is the normalizing partition function. Observe that
limy . log Zg/log A = H(G). Sometimes one considers A = exp(1/T) where T is temperature. The
case T'= 0, namely A = oo then corresponds to zero temperature, or equivalently the optimization. We
distinguish this with a positive temperature case, namely A < oco.

We will consider in this paper a variety of MRF defined on sparse random graphs G(N, [¢N |) and
G(N,r). (In the statistical physics literature z; are called spin values, and the corresponding MRF is
called a diluted spin glass model.) We now describe some examples of concrete and well-known MRF
and show that they fit the framework described above.

e Independent set. K = 2 and ¢ = 1. Define H;(1) = 1, H;(0) = 0 for all i« € [N]. Define
H.(1,1) = —o0,H.(1,0) = H.(0,1) = H.(0,0) = 0 for every edge e = (i1,i2). Then for every
vector z € {0, 1} we have H(z) = —oo if there exists an edge e; = (i1, 42) such that x;, = x;, = 1
and H(xz) = |{i : x; = 1}|, otherwise. Equivalently, H(x) takes finite value only on x corresponding
to independent sets, and in this case it the cardinality of the independent set. H(G) is the
cardinality of the largest independent set.

e MAX-CUT. K = 2 and ¢ = 1. Define H;(0) = H;(1) = 0. Define H.(1,1) = H.(0,0) =
0,H.(1,0) = H.(0,1) = 1. Every vector = € {0,1}"V partitions nodes into two subsets of nodes
taking values 0 and 1 respectively. H(z) is the number of edges between the two subsets. H(G)
is the largest such number, also called maximum cut size.

e Anti-ferromagnetic Ising model. K = 2 and ¢ = 1. Fix § > 0,B € R. Define H;(0) =
—B, H;(1) = B. Define H.(1,1) = H.(0,0) = —3, H.(1,0) = H.(0,1) = 8. It is more common to
use alphabet {—1,1} instead of {0,1} for this model. We use the latter for consistency with the
remaining models.

e ¢-Coloring K = 2 and ¢ is arbitrary. H;(z) = 0,Vz € [g] and H.(x,y) = 0 if x = y and
H(z,y) = 1 otherwise. Therefore for every = € [q]"V, H(x) is the number of properly colored
edges and H(G) is the maximum number of properly colored edges. This problem is also known
as the max-q-cut problem - splitting nodes into ¢ parts so that the number of edges between the
parts is maximized.

e Random K-SAT. K > 2 is arbitrary, ¢ = 1. H; = 0 for all i € [N]. The edge potentials are
defined as follows. For each edge e € E generate a. = (a1, ...,ax) uniformly at random from
{0,1}, independently for all edges. For each edge e set H(ai,...,ax) =0 and H.(z) =1 for all



other = (z1,...,2x). Then for every z € {0,1}, H(z) is the number of satisfied clauses and
H(G) is the largest number of satisfiable clauses. Often this model is called (random) MAX-K-SAT
model. We drop the MAX prefix in the notation.

e NAE-K-SAT (Not-All-Equal-K-SAT). The setting is as above except now we set He(ay, ..., ax)
H.(1—ay,...,1—ag)=0and H.(x) =1 for all other x for each e.

It is for the K-SAT and NAE-K-SAT models that considering directed as opposed to undirected hy-
pergraphs is convenient, as for these models the order of nodes in edges matters. For the remaining
models, however, this is not the case.

In several examples considered above we have had only two possible values for the edge potential H,
and one value for the node potential. Specifically, for the cases of Coloring, K-SAT and NAE-K-SAT
problems, H. took only values 0 and 1. It makes sense to call instances of such problems “satisfiable” if
H(G) = |E|, namely every edge potential takes value 1. In the combinatorial optimization terminology
this corresponds to finding a proper coloring, a satisfying assignment and a NAE satisfying assignment,
respectively. We let p(N, M) = P(H(G(N,M)) = M) denote the probability of satisfiability when
the underlying graph is Erdés-Rényi graph G(IN, M). We also let p(N,r) = P(H(G(N,r)) = rNK™1!)
denote the satisfiability probability for a random regular graph G(N,r).

3 Main results

We now state our main results. Our first set of results concerns Erdés-Rényi graph G(N, [eN |).

Theorem 1. For every ¢ > 0, and for every one of the six models described in Section 2, there exists
(model dependent) H(c) such that

lim N7'H(G(N, [¢N])) = H(c), (1)

N—oo

w.h.p. Also for every ¢ > 0 there exists p(c) such that
Jim N"Hogp(N, [eN]) = p(c), (2)

for Coloring, K-SAT and NAE-K-SAT models. Moreover, H(c),p(c) are continuous non-increasing
functions of ¢, except for the MAX-CUT problem, in which case H(c) is a continuous non-decreasing
function of c.

As a corollary one obtains the following variant of the satisfiability conjecture.

Corollary 1. For Coloring, K-SAT and NAE-K-SAT models there exists a critical value c; such that
H(c) = ¢ when ¢ < ¢; and H(c) < ¢ when ¢ > cj. Similarly, there exists c;,, such that p(c) = 0 when
c < ¢, and p(c) <0 when ¢ > c;.

Namely, there exists a threshold value ¢* such that if the number of clauses is smaller than ¢*N
there exists a nearly satisfiable assignment (assignment satisfying all but o(IN) clauses), and if the
number of clauses is larger than ¢* N, then every assignment violates linearly in N many clauses. The
interpretation for Coloring is similar. The result above was established earlier by the second author
for randomly generated linear programming problem, using local weak convergence and martingale
techniques [GamO04]. It would be interesting to see if the same result is obtainable using the interpolation
method.

Can one use Corollary 1 to prove the satisfiability conjecture in the precise sense? The answer would
be affirmative, provided that a stronger version of Friedgut’s result [Fri99] on the sharp thresholds for
satisfiability properties holds.



Conjecture 1. For the Coloring, K-SAT and NAE-K-SAT models there erists a sequence My, and
v > 0, such that for every e > 0,

]\}iinoop(N, |1—e)My])=1 and p(N,|[(1+¢)My]|)=O(exp(—yN)), forall N.

In contrast, Friedgut’s sharp phase transition result [Fri99] replaces the second part of this conjecture
with (the weaker) impy_.oo p(NV, [ (1 + €)M3,]) = 0. Thus, we conjecture that beyond the phase transi-
tion region M7;, not only is the model not satisfiable w.h.p., but in fact the probability of satisfiability
converges to zero exponentially fast. Conjecture 1 together with Theorem 1 implies the satisfiability
conjecture using a simple counting argument which we omit. This conjecture is known and was men-
tioned on several occasions, but to the best of our knowledge, was never stated explicitly in any of the
publications.

Let us now state our results for the existence of the scaling limit for the log-partition functions.

Theorem 2. For every ¢ > 0, A\ > 1, and for every one of the siz models described in Section 2, there
exists (model dependent) z(c) such that

Jim N~1log Z(G(N, [eN])) = z(c), (3)

w.h.p., where z(c) is continuous non-increasing functions of ¢, for all models except for MAX-CUT, in
which case z(c) is a continuous non-decreasing function of c.

Remark: The case A = 1 is actually uninteresting as it corresponds to no interactions between the
nodes leading to Z(G) = [;ey Axeela i@ I this case the limit of N~!log Z(G(N, |cN])) exists
trivially when node potentials H; are i.i.d. Unfortunately the proof technique based on interpolation
method does not seem to extend to the case A < 1. For Ising model this corresponds to a ferromagnetic
case and the existence of the limit was established in [DM] using a local analysis technique.

We now turn to our results on random regular graphs.
Theorem 3. For every r € Z, and for every one of the six models described in the previous section,
there exists (model dependent) H(r) such that limy_ o ner—1x7, N"'H(G(N,r)) = H(r) w.h.p. Also
for every r € Z there exists p(r) such that limy_, . ner-1x7., N~tlogp(N,r) = p(r) for K-SAT and
NAE-K-SAT models.

Note, that in the statement of the theorem we take limits along subsequence N such that NrK ~!is an
integer, so that the resulting random hypergraph is well-defined. Unlike the case of Erdos-Rényi graph,
we were unable to prove the existence of the large deviation rate limy_.o ver-1K7., N~tlogp(N,r)
for the case of coloring on random regular graph. At the end of the proof of Theorem 3 we discuss
challenges associated with obtaining such a result, which we still believe is true.

Finally, we state our results for the log-partition function limits for random regular graphs.

Theorem 4. For every r € Z4, A > 1, and for every one of the siz models described in the previous
section, there exists (model dependent) z(r) such that w.h.p, we have

lim N~ 'log Z(G(N,r)) = 2(r). (4)

N—o0

4 Proofs: Optimization problems in Erdos-Rényi graphs

The following simple observation will be useful throughout the paper. Given two hypergraphs G; =
([N], Ei), i = 1,2 on the same set of nodes [IN] for each one of the six models in Section 2

|H(G1) — H(G2)| = O(|E1AE|). ()



This follows from the fact that adding (deleting) an edge to (from) a graph changes the value of H by
at most 1 for all models except for the Ising model, where the constant is .
Our main technical result leading to the proof of Theorem 1 is as follows.

Theorem 5. For every 1 < Ny, No < N — 1 such that N1 + No = N,

E[H(G(N, [eN]))] = E[H(G(Ni, My))] + E[H(G(N2, M2))] (6)
logp(N, [¢N|) > logp(N, My) + log p(N, Ma), (7)

where M, 4 Bi(|[eN],N;/N), j=1,2.

We remark that the randomness underlying the probability p(N, M;) = P(H(G(Nj, M;)) = M;) is
both with respect to the randomness in the graph generation and the number of hyperedges M;. Also
in the theorem above, we do not assume independence of M;,j = 1,2.

Let us first show how this result implies Theorem 1.

Proof of Theorem 1. Since M; have Bernoulli distribution, we have E[|M; — |cN;||] = O(V/N). This
together with observation (5) and Theorem 5 implies

E[H(G(N, [eN]))] = E[H(G(Ny, [¢N1)))] + E[H(G(Nz, [¢N2]))] = O(VN). (8)

Namely the sequence E[H(G(N, [c¢N|))] is “nearly” super-additive, short of the O(v/N) correction term.
Now we use Proposition 4 in the Appendix for the case & = 1/2 to conclude that the limit

lim N™'E[H(G(N, [c¢N]))] £ H(c)

N—oo

exists. Showing that this also implies convergence of N~"H(G(N, |c¢N|)) to H(c) w.h.p. can be done
using standard concentration results [JLR0O] and we skip the details. It remains to show that H(c)
is a non-increasing (non-decreasing for MAX-CUT) continuous function. The first is an immediate
consequence of the fact that E[H(G(N, M))] > E[H(G(N, Ms))] (E[H(G(N, My))] < E[H(G(N, M3))]
for MAX-CUT) when M; < M - adding hyperedges can only decrease (increase for MAX-CUT) the
objective value. The continuity follows from (5) which implies

E[H(G(N, M1))] — E[H(G(N, M2))| = O(|My — Moa|).

In fact, this implies Lipschitz continuity of H(c). This concludes the proof of (1).

We now turn to the proof of (2). We first establish the following claim for the three models of
interest (Coloring, K-SAT, NAE-K-SAT).

Lemma 1.
| log p(N;, M) —log p(Nj, [eN;])| = O(VN), j=1,2. 9)

Proof. We first assume K-SAT or NAE-K-SAT models. Note that for these models there exists a
constant 3 > 0 such for every graph and potential realization (G = (V, E), H) such that the problem
is satisfiable (namely H(G) = |E|), if a randomly chosen hyperedge e is added with a potential chosen
according to the model, then

P(H(G +e) = |E| +1) > 8.

In other words, if the current graph is satisfiable, the new graph obtained by adding a hyperedge remains
satisfiable with at least a constant probability. Indeed, for example for the case of K-SAT, if the instance
is satisfiable and x is a satisfying assignment, the added edge remains consistent with x with probability



at least 3 = 1 —1/2K. For the case of NAE-K-SAT it is 3 = 1 — 1/25~1. This observation implies that
for every positive M, m,

IP’(H(G(N,M £ m)) = M +m|H(G(N, M) = M> > gm,

further implying

logP(H(G(N,M +m)) = M +m) >logP(H(G(N,M)) = M) —mlog(1/8),
Now, suppose M; 4 Bi([eN], N;/N). Using the concavity of log

log P(H(G(N;, My)) = M;) = log ( > P(H(G(N;,m)) = m)P(M; = m))
m>0
> " log(P(H(G(N;,m)) = m))P(M; = m).

m>0

Again using the fact E[|M; — |cN;]|] = O(v/N) we obtain (9).

For the case of Coloring the proof is more involved. Given a constant § > 0 we call a graph G on N
nodes d-unusual if it is colorable and in every coloring assignment there exists a color class with size at
least (1 — 0)N. Namely, for every x such that H(x) = |E|, there exists k € [g] such that the cardinality
of the set {i € [N]: z; = k} is at least (1 — §)N. We claim that if M = ©(N) then

P(G(N, M) is d-unusual) < o™ (6), (10)

for some «(9) such that a(d) — 0 as § — 0. The claim is shown using the first moment method - the
expected number of graphs with such a property is at most o™V (§). Indeed, given a subset C' C [N] such
that |C| > (1—0)N, the probability that the graph G(N, M) is consistent with coloring nodes in C' with
only one color is at most (1 — (1 — §)2)®N) | since we must have that no edge falls within the class C.
There are at most (6%) ~ exp(H (0)N) choices for the subset C', where H(§) = —dlogd—(1—0)log(1—9)

A

is the usual entropy function. It is easy to check that «(5) £ exp(—H(8))(1 — (1 — 6)?)®() satisfies

a(9) °=%0 and the claim is established.

Now observe that if a graph G = (V, E) is colorable but not d-unusual, then adding a random edge
e we obtain P(H(G +e¢) = |E| + 1) > §(1 — §) £ 3. Namely, in this case the probability goes down by
at most a constant factor. This observation implies that when M = ©(N), we have

P(H(G(N,M +1)=M+1)) > P(H(G(N,M +1) = M + 1)|G(N, M) is colorable and is not §-unusual)
x P(G(N, M) is colorable and is not §-unusual)
> BP(G(N, M) is colorable and is not -unusual)
> BP(G(N, M) is colorable) — P(G(N, M) is é-unusual)
= BP(H(G(N, M) = M)) — o™ (5).

From this we obtain that if M = ©(N), then
P(H(G(N,M +m) = M +m)) > "P(H(G(N, M) = M)) — (1 - B)" '™V (5)

Now observe that P(H(G(N,M) = M)) > (1 —1/q)M. Indeed split nodes into ¢ equal groups. The
likelihood that this creates a valid g-coloring is at least the claimed value. Now select  small enough, so
that a(d) < (1/2)B(1—1/q). Then for this choice of §, we have obtain P(H(G(N, M +m) = M +m)) >
(B3/2)™P(H(G(N, M) = M)) for all large enough N. The remainder of the proof of the lemma is similar
to the one for K-SAT and NAE-K-SAT models. O



Lemma 1 in combination with Theorem 5 implies
log p(N, [¢N]) > log p(N1, [¢N1]) + log p(Na, [eN2|) — O(VN). (11)

To complete the proof of (2), we use Proposition 4 from the Appendix with a again set to 1/2. Lipschitz
continuity and monotonicity of p(c) is proven similarly as for H(c). O

We now turn to the proof of Theorem 5 and in particular introduce the interpolation construction.

Proof of Theorem 5. We begin by constructing a sequence of graphs interpolating between G(N, |¢N|)
and a disjoint union of G(Ni, M;) and G(Na, Ms). Given N, Ny, Ny st. N; + Ny = N and any
0 <r < |eN|, let G(N,|[cN|,r) be the random graph on nodes [IN] obtained as follows. It contains
precisely [cN | hyperedges. The first r hyperedges e1,...,e, are selected u.a.r. from all the possible
directed hyperedges (namely they are generated as hyperedges of G(N, |¢N]). The remaining |[c¢N| —r
hyperedges e,11, . .., €|.n| are generated as follows. For each j = r+1,..., [cN ], with probability Ni/N,
e; is generated independently u.a.r. from all the possible hyperedges on nodes [N1], and with probability
N3 /N, it is generated u.a.r. from all the possible hyperedges on nodes [No](= {N1+1,...,N}). The
choice of node and edge potentials H,, H. is done exactly according to the corresponding model, as for
the case of graphs G(N, |¢N]). Observe that when r = [¢N |, G(N, [¢N|,r) = G(N, [¢N]), and when

r =0, G(N, |cN|,r) is a union of disjoint graphs G(Ny, M;), G(Na, M), where M; < Bi(|eN|,N;/N).
Proposition 1. For everyr=1,...,|cN],

E[H(G(N, [eN],r))] = E[H(G(N, [¢N|,r —1))]. (12)
Also for Coloring, K-SAT and NAE-K-SAT models

IP<H(G(N, leN], 7)) = LCNJ> > IP<H(G(N, leN],r—1)) = LCNJ). (13)

Let us first show how Theorem 5 follows from this proposition. Observe that for a disjoint union
of two graphs G = Gy + Go, with G = (V, E),G; = (V1, E1), Gy = (Va, Es), we always have H(G) =
H(G1) 4+ H(G;) and P(H(G) = |E|) = P(H(G1) = |E1|)P(H(G2) = |Es|). The second observation
implies further that log P(H(G) = |E|) = log P(H(G1) = |E1|) +1og P(H(G3) = |E»|). Theorem 5 then
follows from Proposition 1. O

Proof of Proposition 1. Observe that G(N, |cN|,r — 1) is obtained from G(N, [¢N|,r) by deleting a
hyperedge chosen u.a.r. independently from r hyperedges ey, ..., e, and adding a hyperedge either to
nodes [Ni] or to [Na] with probabilities N;/N and N2/N respectively. Let Gg be the graph obtained
after deleting but before adding a hyperedge. For the case of K-SAT and NAE-K-SAT (two models with
random edge potentials), assume that Gg also encodes the underlying edge potentials of the instance.
For the case of Coloring, K-SAT, NAE-K-SAT, note that the maximum value that H can achieve for
the graph Gg is |¢N| — 1 since exactly one hyperedge was deleted. We will establish a stronger result:
conditional on any realization of the graph Gy (and random potentials), we claim that

E[H(G(N, [¢N],r))|Go] = E[H(G(N, [¢N],r —1))|Gol. (14)

and

IP’(H(G(N, [cN|,7)) = [cN]

GO) > IP’(H(GO(N, [cN|,r —1)) = [cN]| ‘G()) (15)

for Coloring, K-SAT, NAE-K-SAT. Proposition then follows immediately from these claims by averaging
over Gg. Observe that conditional on any realization Go, G(N, |¢N|,r) is obtained from Gg by adding
a hyperedge to [N] u.a.r. That is the generation of this hyperedge is independent from the randomness
of Gg. Similarly, conditional on any realization G, G(N, [c¢N |, — 1) is obtained from G¢ by adding a
hyperedge to [IN1] or [N3] u.a.r. with probabilities N1 /N and No/N respectively.

We now prove properties (14) and (15) for each of the six models.
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e Independent sets. Let O* C [N] be the set of nodes which belong to every largest independent
set in Go. Namely if I C [N] is an i.s. such that |I| = H(Gq), then O* C I. Then for every edge
e=(i,k), HGo+e) = H(Gy) — 1if i,k € O* and H(Gg +¢e) = H(Gy) if either ¢ ¢ O* or k ¢ O*.
Here Gg + e denotes a graph obtained from Gg by adding e. When the edge e is generated u.a.r.

[\ 2
from the all possible edges, we then obtain E[H (G + €)|Go] — H(Gg) = _(|?\7|) . Therefore,

)
E[H(G(N, |cN|,r)|Go] — H(Gy) = —(‘%') . By a similar argument

E|H(G(N, |eN]|,r — 1)‘@0} — H(Go) = _Nl(IO*?V[NﬂI)? - &(WY

N 1 N N2
- _(&IO* NNl | M |on [N2]|)2
= \N N N Ny

_ _(’?\?)2 — E[H(G(N, |eN],r)[Go] — H(Go),

and (14) is established.

e MAX-CUT. Given Gy, let C* C {0,1}[N] be the set of optimal solutions. Namely H(z) =
H(Gy),Vz € C* and H(x) < H(Gg) otherwise. Introduce an equivalency relationship ~ on [N].
Given i,k € [N], define i ~ k if for every x € C*,z; = x. Namely, in every optimal cut, nodes
1 and k have the same value. Let O; C [N],1 < j < J be the corresponding equivalency classes.
Given any edge e = (i, k), observe that H(Go + ¢) = H(Gy) if i ~ k and H(Go +¢) = H(Gp) + 1
otherwise. Thus

E[H(G(N, [N, 7) GO] ~HG)=1- % (’O]\ﬁ’)Q

1<j<J

and

1 O3 1]\ 2 2 o: 201\ 2
E[H(G(N, [eN],r — 1)|Go] — H(Go) =1~ ! ’J?Vl“v”) M g (10501l

1<j<J 1<j<J

* 2 * 2 1\ 2
Using %(lojg[lNl”) + %(IO];LMH) > (‘?\?|> we obtain (14).

e Ising. The proof is almost identical as for the MAX-CUT problem. The only difference is that
H(Go+e) =H(Go)+ pife=(i,7) and i ¢ j and H(Go + e) < H(Go) + § if i ~ j. Notice that
the presence of the node potential (magnetic field B) does not affect the argument.

e Coloring. Let C* C [¢]"V be the set of optimal colorings. Namely H(z) = H(Gy),Vz € C*.
Given i,k € [N], define i ~ k iff x; = xj, for every z € C*. Namely, in every optimal coloring
assignments, i and k receive the same color. Then for every edge e, H(Gg + ¢) = H(Gyg) — 1 if
i ~kand H(Gop+e) = H(Gg) otherwise. The remainder of the proof of (14) is similar to the one
for MAX-CUT.

Now let us show (15). Thus assume G is a colorable graph. Since it has [¢N | — 1 edges it means
H(Go) = [¢N] — 1. Letting Oj C [N],1 <j < J denote the equivalence classes, we obtain that

]P’(H(G(N, (N 7)) = Lch‘GO> .S ('O?'f.

- N
1<5<J
Similarly,
N, 0*N[N]\N2 N, |07 N [Na][\2
P H(G(N, [eN],r —1)) = |cN]|Gy ) =1 - — —~) N —N )
< ( ( aLC Jar )) LC J 0) - Nl ) N - ( N2 )
1<5<J 1<5<J

The relation (15) then again follows from convexity.
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e K-SAT. Let C* C {0,1}" be the set of optimal assignments. Define a node i (variable z;) to be
frozen if either x; = 0,Vz € C* or ; = 1,Vx € C*. Namely, in every optimal assignment the value
of i is always the same. Let O* be the set of frozen variables. Let e = (i1,...,kx) C [N] be a
hyperedge and let H, : {0, 1}K — {0,1} be some corresponding edge potential. Namely, for some
Y1, .-,y €{0,1}, He(x4y, ... @i,) =0if 2, = y1,..., 2 = yx and H, = 1 otherwise. Consider
adding e with H, to the graph Go. Note that if e N ([N]\ O*) # 0 then H(Go + ¢) = H(Gy) + 1,
as in this case at least one variable in e is non-frozen and can be adjusted to satisfy the clause.

Otherwise, suppose e C O, and let z} xzf € {0, 1} be the corresponding frozen values of

PP
i1y...,i. Then H(Gq +e) = H(Go) if 2}, = v1,..., Ty, = YK, and H(Gop+¢e) = H(Gp) + 1
otherwise. Moreover, for the random choice of H, the first event H(Go + e¢) = H(Gg) occurs with

probability 1/2%. We conclude that

E[H(G(N, [cN],7)

Go| - H(G0) =1~ 5 (151)"

IP’(H(G(N, [eN|,r—1)) = LcNJ‘H(GO) = [eN]| - 1) 1— L(IO*|)K.

26\ N
Similarly,
_ 1 Ny /|O* N[Ny 1 Na |O*
BIH GV, LeN .7 — D[Go, Ho) ~ H(G) = 1 — i e (10NN E L N 10701l

IF’(H(G(M [eN],r=1)) = LcNJ‘H(GO) = LcNJ—l) — 1—%%(%){%%(%)5

K

Using the convexity of the function ™ on x € [0,00), we obtain the result.

e NAE-K-SAT. The proof is very similar. The estimate 1/2% changes to 2/2%, but the rest of
the proof is the same.

We have established (14) and (15). With this, the proof of Proposition 1 is complete. O

5 Proofs: Log-partition function in Erdos-Rényi graphs

The following property serves as an analogue of (5). Given two hypergraphs G; = ([N], E;), i = 1,2 on
the same set of nodes [N] for each one of the six models and each finite A

|log Z(G1) — log Z(G2)| = O(|E1AE3|). (16)

This follows from the fact that adding (deleting) an hyperedge to (from) a graph results in multiplying
or dividing the partition function by at most A for all models except for the Ising model, where the
corresponding value is AP,

The analogue of Theorem 5 is the following result.

Theorem 6. For every 1 < Ni, No < N — 1 such that N1 + No = N and every A > 1

Ellog Z(G(N,cN))] > Ellog Z(G(N1, M1))] + E[log Z(G(Na, Mas))] (17)

where M; £ Bi(cN,N;/N), j=1,2.

As before, we do not assume independence of Mj, j = 1,2. Let us first show how this result implies
Theorem 2.
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Proof of Theorem 2. Since M; have Bernoulli distribution, using observation (16) and Theorem 2 we
obtain

Ellog Z(G(N, [¢N]))] > E[log Z(G(N1, [¢N1]))] + E[H (G(Na, [¢Ns]))] = O(VN). (18)
Now we use Proposition 4 in the Appendix for the case & = 1/2 to conclude that the limit

lim N~ 'E[log Z(G(N, [eN]))] £ z(c)

N—oo

exists. Showing that this also implies convergence of N~1H(G(N, [cN])) to H(c) w.h.p. again can be
done using standard concentration results [JLROO] by applying property (16) and we skip the details.
The proof of continuity and monotonicity of z(c) is similar to the one of H(c). O]

Thus it remains to prove Theorem 6.

Proof of Theorem 6. Construct an interpolating graph G(N, [¢N|,r),0 < r < |cN| exactly as in the

previous subsection. We now establish the following analogue of Proposition 1. O
Proposition 2. For everyr=1,...,cN,
Ellog Z(G(N,cN,r))] > Ellog Z(G(N,eN,r — 1))]. (19)

Let us first show how Theorem 6 follows from this proposition. Observe that for disjoint union of
two graphs G = Gy + Go, with G = (V, E), Gy = (V1, E1),Ge = (Va, Es), we always have log Z(G) =
log Z(G1) + log Z(G2). Theorem 6 then follows from Proposition 2.

Proof of Proposition 2. Recall that G(N,cN,r—1) is obtained from G(N, c¢N, r) by deleting a hyperedge
chosen u.a.r. independently from r hyperedges eq, ..., e, and adding a hyperedge e either to nodes [N1]
or to [N2] with probabilities N1 /N and Na/N respectively. Let as before Gg be the graph obtained after
deleting but before adding a hyperedge, and let Zy and po be the corresponding partition function and
Gibbs measure respectively. In the case of K-SAT and NAE-K-SAT models we assume that Gg encodes
the realizations of the random potentials as well. We now show that conditional on any realization of
the graph Gg

Ellog Z(G(N,¢eN,r))|Go] > Ellog Z(G(N,cN,r — 1))|Gy). (20)
The proof of (20) is done on a case by case basis and it is very similar to the proof of (14).

e Independent sets. We have

[ Z(G(N,cN
E [log Z(G(N, eN.7))|Go] ~log Zo = E [log 2 éc 771))’@’0}
L 0

_E _lo 21 AT — Z[ 1{ec1}/\ul
° S AT

-E :log <1 — pole C Io)> ‘Go} )

o

where the sums ), are over independent sets only and Iy denotes an independent set chosen
randomly according to ug. Notice, that since we are conditioning on graph Gg the only randomness
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underlying the expectation operator is the randomness of the hyperedge e. Note that ug(e C Ip) <
1 since po(e ¢ Io) > po(lo = ) > 0. Using the expansion log(1 —z) = =3 ~,2™/m

E [log Z(G(N,cN,1))|Go] — log Zy = —E -

ZMO(G C Ip) ‘Go
k=1

\TEL 1]

E| > Lecrt = —|C
1. Ik 0

ATh 1]

P

5 AE Pk ]
zZ¥ N ’

1 I, Ik

x| =

I
|
Me T T8
==

B
Il
=

where in the last equality we have used the fact that e is distributed u.a.r. Similar calculation
for log Z(G(N,cN,r — 1)) that is obtained by adding an hyperedge to Go N [IN1] with probability
N1 /N or to Go N [N3] with probability No/N gives

E [log Z(G(N,cN,r —1))|Go] — log Zy

. 2 . 2
——Z Z /\ZM'“' Ny (10 PN N (1052 P 0[]
- . N N, No N

2

we obtain
E [log Z(G(N,cN,1))|Go] —log Zy > E[log Z(G(N,cN,r —1))|Go] — log Z
and (20) is established.

Again using the convexity of f(z) =z

e MAX-CUT. Similarly to the case of independent sets we have
E [log Z(G(N, cN, 7)) |Go] — log Zg

B {log Z(G(]\;OCN, T)) ‘Go}

er{(),l}N ].{xl:x]})\H(l’) =+ )\er{(),l}]\f ].{xﬁéx]})\H(Z’)
ZxG{O,l}N A (@)

log A + E [log (1 (- %)Mo(ggi _ xj)> ‘GO} .

= E |log

Go

Since A > 1 we have 0 < (1 — A Y)ug(z; = ;) < 1 (this is where the condition A > 1 is used)
implying

E [log Z(G(N,cN,1))|Go] — log Zy — log A

i (1= X"YFpg(x; = z)F

— _E G
k=1 & i
00 k
(1 _ )\—l)k )\21:1 H(zg)
= -2 Bl X TG
k=1 21,...,2,€{0,1}V 0
00 k
(1= At Az )
=Y X T EluealG).
k=1 1,0, €{0,11N 0
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Now for every sequence xy,...,z; introduce equivalency classes on [N]. Given i,k € [N], say
1~k if xf = xﬁ,Vﬁ = 1,...,k. Namely, in every one of the cuts defined by xz,,¢ = 1,...,k, the
nodes i and k belong to the same group. Let Og,1 < s < J be the corresponding equivalency

3
classes. For an edge e = (i, k) generated u.a.r., observe that E |:1{x¢=ijZ}’G0] = Z;,]:l (‘(])V—s‘) .
Thus

(1= AThHk A HO 10\ 2
E[logZ(G(N,cN,r))|G0]—logZO—log)\:_Z(k> > Z(!J\;\) |
0

k=1 L1,y Tk s=1

and similarly,

E [log Z(G(N,cN,r —1))|Go| — log Zy — log A
__i(l—A_l)k Z )\Zlng(@i & |OSQ[N1” 24_& |Osﬂ[N2]| 2
=k zk N Ny N Ny '

L1,y T 0 s=1
Using the convexity of the function f(z) = 22, we obtain (20).

e Ising, Coloring, K-SAT and NAE-K-SAT. The proofs of the remaining cases are obtained
similarly and is omitted. The condition A > 1 is used to assert positivity of 1 — A~! in the
logarithm expansion.

O]

6 Proofs: Random regular graphs

Our result leading to the proof of Theorem 3 is as follows.

Theorem 7. For every Ni, Ny such that N = Ny + Ny and Nir/K, Nor/K are integers,

).

Proof. Fix N1, Ny such that N1+ Ny = N and Nyr/K, Nor/K are integers. Let us first prove Theorem 7
for the simple case minj—12 N; < 40N'S. In this case starting from the graph G(V,r) we can obtain
a disjoint union of graphs G(Nj,r) via at most O(N %) hyperedge deletion and addition operations.
Indeed, suppose without loss of generality that Ny < 40N ¢. Delete all the hyperedges inside [N1] as
well as all the hyperedges connecting two parts. Then generate a random graph G(Ni,r) from scratch.
Finally, complete a so obtained partial matching in the configuration model on [Nar| and project. The
total number of deleted and generated hyperedges is O(N %) and indeed we obtain a disjoint union of
graphs G(Nj,r),j = 1,2. The hyperedge deletion and generation operation changes the value of H by

oo

E[H(G(N,7))] = E[H(G(N1,7))] + E[H(G(Ng,7))] = O(N

at most O(N é), and the proof of Theorem 3 is complete.
Thus through the remainder of the section we assume min;—; 2 N; > 40N % Fix

T = Nr/K — (1/K)N3. (21)

Let G(N,r,T) denote the graph obtained by creating a size T" matching on N7 nodes of the configu-
ration model uniformly at random and then projecting. For example if T' was Nr/K, then we would
have obtained the usual G(NNV,r). In the current situation we have exactly N § isolated nodes in the
configuration model.

We now describe an interpolation procedure which interpolates between G(N,r,T') and a union of
two graphs on nodes [N;] and [N3]. For every integer partition K = K; + Ko such that K, Ko > 1 let
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Tk, Kk, < T be the (random) number of hyperedges which connect parts [N1] and [Na] in G(V,r,T) and
such that each connecting hyperedge has exactly K; nodes in part [N;r] in the configuration model.
Let Ty = zK1,K221:K1+K2=K Tk, K, Observe that Ty < minj—q o(N;r).

Define G(N,T,0) = G(N,r,T) and define G(N,T,t),1 <t < T} g1 recursively as follows. Assum-
ing G(N,T,t—1) is already defined, consider the graph G obtained from G(N, T, ¢t — 1) by deleting an
hyperedge connecting [N1] and [N2] chosen uniformly at random from the collection of hyperedges which
have exactly 1 node in part [N17] and K — 1 nodes in part [Nar] (from the remaining T} g1 — (t — 1)
such hyperedges). Then we construct G(N,T,t) by adding an hyperedge to the resulting graph as
follows: with probability 1/K an hyperedge is added to connect K isolated nodes chosen uniformly at
random among the all isolated nodes from the set [Ny7]. With the remaining probability (K —1)/K
an hyperedge is added to connect K isolated nodes chosen uniformly at random among the all isolated
nodes from the set [Nar|. It is possible that at some point there are no K isolated nodes available in
[Njr]. In this case we say that the interpolation procedure fails. In fact we say that the interpolation
procedure fails if in either of the two parts the number of isolated nodes is strictly less than K, even if
the attempt was made to add a hyperedge to a part where there is no shortage of such nodes.

Thus we have defined an interpolation procedure for ¢t <Tj k1. We now define it for 71 g1 +1 <
t < T5 g_2 analogously : we delete a randomly chosen hyperedge connecting two parts such that the
hyperedge has 2 nodes in part j = 1, and K — 2 nodes in part j = 2. Then we add an hyperedge
uniformly at random to part j = 1,2 to connect K isolated nodes with probability 2/K and (K —2)/K
respectively. The failure of the interpolation is defined similarly as above. We continue this for all
partitions (K7, K2) until (K — 1,1), including. For the (K7, K3) phase of the interpolation procedure
the probabilities are K;/K and K3/K respectively. We have defined the set of interpolating graphs
G(N,T,t),0 <t < Tp.

Let Z denote the event that the interpolation procedure succeeds. For simplicity, if the interpolation
procedure fails in some step ¢’ we still define G(N,T,t),t <t < Ty to be the same graph as the first
graph at which the interpolation procedure fails: G(N,T,t) = G(N,T,t'). It will be convenient to define
G(N,T,t) = G(N, T, Tp) for Ty <t < minj—; 2(NN;r), whether the interpolation procedure fails or not.

Provided that the interpolation procedure succeeds, the graph G(N,7,min;—; 2 NV;) is a disjoint
union of two graphs on [N;],j = 1,2 each “close” to being an r-regular random graph, in some appro-
priate sense to be made precise later.

Our next goal is establishing the following analogue of Proposition 1. As in previous sections, let Gy
denote the graph obtained from G(N,T,t — 1) after deleting an hyperedge connecting two parts, but
before an hyperedge is added to one of the parts, namely, before creating G(N, T, t), conditioned on the
event that the interpolation process survives till ¢. If, on the other hand the interpolation procedure
fails before t, let G be the graph obtained at the last successful interpolation step after the hyperedge
deletion.

Proposition 3. For every t < min; N;

E[H(G(N,T,t — 1))] > E[H(G(N, T, t))] — O(E;g% Zjl(t)) (22)

where Z;j(t) denotes the number of isolated nodes in the j-th part of the configuration model of Go.

Proof. Let I; be the event that the interpolation succeeds for ¢ steps. Notice that E[H(G(N,T,t —
I)Zy_ ] = E[H(G(N,T,t))|Zf_,], since the two graphs are identical, and thus the statement of the
proposition holds.

Now we will condition on the event Z; and let Gg denote as before the graph obtained after edge
deletion and before hyperedge addition. Moreover, condition on the event that Gg was obtained in
phase (K71, K»), K1+ Ky = K. Specifically, after deleting an hyperedge to obtain Gy, extra K; isolated
nodes were created in part j = 1,2, and the number of isolated nodes is at least K in both parts of
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(configuration model) Gg. Let A; denotes the degree of the node i € [N] in the graph Gy. Observe that
then Z;(t) = Zie[Nj] r — A;. We now establish a stronger result. Namely,

E[H (G(N, Tt~ 1))|Go] > E[H(G(N, T.1))|Go] O max ). (23)
I=12 ) e, T A
Observe that conditioned on obtaining graph Gg, the graph G(N,T,t — 1) can be recovered from Gg
in distributional sense by adding an hyperedge connecting K isolated node from [N;ir]| to K» isolated
node from [Nyr], both chosen uniformly at random, and then projecting.
We now conduct model dependent case by case analysis.

e Independent sets. In this case K = 2 and the only possibility is K1 = K5 = 1. Asin the previous
section, O* again denote the set of nodes in [N] which belong to every largest independent set
in Gop. Then in the case of creating graph G(N,T,t — 1) from Gy, the newly added hyperedge e
decreases H by one if both ends of e belong to O*, and leaves it the same otherwise. The first
event occurs with probability

ZhEO*ﬁ[NlLizEO*ﬂ[Nz](r —Ai)(r— Ay) ZieO*ﬁ[Nl}(T —4) ZiEO*ﬁ[Nﬂ(T — A

T
Y ieilinemo] (T = Ai)(r = Qi) Y (r = A Yy (= A)

We now analyze the case of creating G(N,T,t). Conditioning on the event that e was added to
part [IV;r], the value of H decreases by one iff both ends of e fall into O* N[NN;]. This occurs with
probability

2

<Zi€[O*ONﬂ(T - A"))Q ~ 2icon) (T~ A (Zie[O*ﬁNj](r - Aﬂ) -o( 1 )
<Zi€[Nj](r - Ai))Q = 2iey) (= Ad) (Zie[Nj](T - Ai))Q > iern;) (r — Q)

Therefore, the value of H decreases by one with probability

1 (Zie[o*mvj](r - Az’)>2 - O( 1

25 (S - 20)’

and stays the same with the remaining probability. Using the inequality (1/2)(x? + y?) > xy we
obtain (23).

max

=12 Y iein,) (r — Ai) )’

¢ MAX-CUT, Ising, Coloring. As in the proof of Theorem 1 we introduce equivalence classes
O; C [N],1 < j < J on the graph Gg. The rest of the proof is almost identical to the one for the
Independent Set model and we skip the details. Notice, that in all of these cases we have K = 2
and the interpolation phase has only one stage corresponding to (K7, K2) = (1,1).

e K-SAT. This is the first model for which K > 2. Suppose the graph Gg was created in stage
(K1, Ks). As in the previous section let O* C {0,1}" denote the set of optimal assignments in
the graph Gg. Reasoning as in the previous section, when we reconstruct graph G(N,T,t — 1)
in the distributional sense by adding a random hyperedge connecting K; nodes in [Nyr] with Ko
nodes in [Nar], the probability that the value of H decreases by one is precisely

1 [ZiGO*O[Nl](T - Ai)]Kl [ZieO*m[Ng](T - A,-)r@
2K Zie[Nl](T' - Ai) Zz’e[Nz}(r SAY)

Similarly, creating G(N, T, t) from Gy decreases the value of H by one with probability

1 Ky [ 2oy (T — Ai)rf 1 Koy [ZieO*O[NQ](T - Ai)]K B O( 1 )

oK 15 K 1.7 max
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1 1
Applying Young’s inequality, namely that ab < par + gbse for every a,b > 0,p+q = 1,p,q > 0,
with the choice p = K1 /K,q = K2/ K,

[ZiEO*m[Nl](T - Ai)]K17

a =
2ieiny (= Ag)

b— [ZieO*m[Ng](r - z)]K2
ZiE[NQ](T - Az) ’

and canceling 1/2% on both sides, we obtain the result.

e NAE-K-SAT. The proof is identical to the one for K-SAT. The only difference is factor 1/25~1
replacing 1/2%.

O]

Our next step is to control the error term in (22).

Lemma 2. The following holds

IE[ Z ma t)] = O(N?). (24)

Proof. Since Gy is obtained after deleting one hyperedge connecting two parts, but before adding a new
hyperedge, then Z;(t) > 1. A crude bound on the required expression is then E[Tj] = O(min N;). We
have E[Z;(0)] = Nj/N% > 40Nz since the initial number of isolated nodes was Nr/2-T = N3 and
min; N; > 40N's. Moreover, P(Z;(0) < (1/2)Nj/N%) = O(exp(—N®1)) for some 6; > 0. Observe that
Z;i(t+1)—Z;(t) = 0 with probability one if the interpolation procedure failed for some ¢’ < ¢t. Otherwise,
if ¢ corresponds to phase (K71, K2) then Z;(t+1)—Z;(t) takes values —K;+ K with probability K;/K and
— K with the remaining probability. This is because during the hyperedge deletion step Z;(t) decreases
by K; and during the hyperedge addition step it increases by K or by zero with probabilities K;/K
and 1 — K;/K respectively. In particular, E[Z;(t 4+ 1) — Z;(t)] = 0. The decision of whether to put the
hyperedge into part 1 or 2 are done independently. Since ¢t < Ty < Nj, we conclude that for each ¢ < Tp

we have P(Z;(0)— Z;(t) > N3/5) O(exp(—N?2)) for some do > 0. Here any choice of exponent strictly

larger than 1/2 applies, but for our purposes 3/5 suffices. It follows that, Z;(t) > (1/2)Nj/N% —Njg/5 for
all t with probability at least 1 — O(N; exp(—N?)) = 1 —O(N exp(—N?)) for § = min(dy, 62). Using this
and Tp < min;(N;r) we obtain that Wlth at least this probability the expression inside the expectation
on the left hand-side of (24) is at most

2

NjT’ N“’

_1 3/5
(1/2)N;N~5 — N7/ (1/2)N;N*§ ~1

The assumption min N; > 40N ¢ guarantees that the denominator is at least 1. The numerator is at

most N3r. We conclude that the expression inside the expectation is at most N i with probability
at least 1 — O(N exp(—N?)). Since we also have To < Nr w.p.l, then using a very crude estimate
O(N exp(—N?)) = O(N~ d) and NN~5 = N3, we obtain the required result. O

As a corollary of Proposition 3 and Lemma 2 we obtain

Corollary 2.

E[H(G(N,T,0))] > E[H(G(N,T,Ty))] - O(N3).
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Let us consider graph G(N, T, Ty)). We further modify it by removing all hyperedges which connect
two parts [N;| of the graph, if there are any such hyperedges left. Notice that if the event 7 occurs,
namely the interpolation procedure succeeds, no further hyperedges need to be removed. The resulting
graph is a disjoint union of graphs obtained on nodes [N1r] and [N2r| by adding a random size partial
matching uniformly at random. The actual size of these two matchings depends on in the initial size of
the partial matching within each part, and also on how many of Ty hyperedges go into each part during
the interpolation steps, and how many were removed in the final part (if any). We now bounds on the
sizes of these matchings. .

Recall min; N; > 40Ns. We showed in the proof of Lemma 2 that the interpolation procedure
succeeds with probability O(N exp(—N?)) for some 6. This coupled with the fact that w.p.1, the
number of hyperedges removed in the final stage is at most IV, gives us that the expected number of
hyperedges removed in the final stage is at most O(N? exp(—N?)) = O(N %) Moreover, since the initial
number of isolated nodes was N3 and during the interpolation procedure the total number of isolated
nodes never increases, then the total number of isolated nodes before the final removal of hyperedges
in G(N,T,Tp) is at most N 5. We conclude that the expected number of isolated nodes in the end of
the interpolation procedure is O(N %) Then we can complete uniform random partial matchings on
[N;r] to full uniform random matchings by adding at most that many hyperedges in expectation. The
objective value of H changes by at most that much as well. The same applies to G(N,r,T) - we can
complete this graph to a full matching on Nr nodes by adding at most N 5 hyperedges, since there are
at most that many isolated nodes in this graph.

Coupled with Corollary 2 we obtain

wlro

E[H(G(N,r))] = E[H(G(Ny,r))] + E[H(G(N2,7))] — O(N3),

for the case min; N; > 40N ¢. This completes the proof of Theorem 7. O

Proof of Theorem 3. The existence of the limit limy_, o ye,—1x7, N E[H(G(N,r))] = H(r) follows
immediately from Theorem 7 and Proposition 4 from the Appendix. Then the convergence w.h.p.

li NYH(G(N,r)) = H(r),
Naoo,]\flg}ﬁlKZ+ ( ( T)) (T)

follows once again using standard concentration results [JLRO00].

The proof of the existence of the large deviations limit limy_. . ver-1x7, N~1tlogp(N,r) = p(r)
for K-SAT and NAE-K-SAT models uses the same interpolation process and the same proof as the one
used in the case of Erdos-Rényi graph. 0

We see that the case of Coloring presents additional difficulties in proving the large deviations result
in the case of the random regular graph - the preprocessing and postprocessing such as deletion of
hyperedges spanning both parts for the case min N; < 40N 6 makes the notion of §-unusual graph not
relevant here, since the deleted/added hyperedges are not selected uniformly at random. We have little
doubt, however, that the large deviations result applies to the case of Coloring as well, which we leave
as an open problem.

The proof of Theorem 4 uses the same interpolation as the one above and the proof itself mimics
the one for Theorem 2. For this reason, we omit the details.
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Appendix. Modified super-additivity theorem
Proposition 4. Given a € (0,1), suppose a non-negative sequence an, N > 1 satisfies
aN 2 an, + an, — O(Na). (25)

for every N1, Ny s.t. N = Ny + Ny. Then the limit imy_.(an/N) ezists.

Proof. It is convenient to define ay = a|y| for every real not necessarily integer value N > 1. It is
then straightforward to check that the property (25) holds when extended to reals as well (thanks to
the correction term O(N®)). Let

* . an
a” = limsup —.
N—o0 N

Fix € > 0 and find k such that 1/k < e <1/(k—1). Find find Ny = Ny(e€) such that

Ny'ltan, > a* — e,

KNG < e
Clearly, such Ny exists. Consider any N > kNy. Find r such that kNy2" < N < kNy2"t!. Applying
(25) iteratively with N; = Na = N/2 we obtain

aN22ra2£T— Z O<21(N)°‘>

2l
0<i<r—1

— an — 0(2“‘“”1\7@),

or
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Now let us find ¢ such that (k+1i)Ng < N/2" < (k+i+1)Ny. Note ¢ < k. Again using (25) successively
with No for Ny and N/27, (N/2") — No, (N/2") — 2Ny, . ... for Na, we obtain

an > (k+i)an, — O(k(N)“)

27 ?
> (k+ d)ax, — O (K(3)°).
Combining, we obtain
an > 2"(k +i)an, — O(Q(I—a)rNa) _ O(k2r(1—a)Na)
=2"(k+i)an, — O(/@y(l—a)]\m)

Then
an 2"(k+1i) an,

N = 27(k+i+1) No

M)(a* —€) — O(szT(l_a)Na_l)

> (1-e)(a" — ) ~ Ok U-oINet),

— 0(k:27“<1—a>Na—1>
> (1-

where 1/k < € is used in the last inequality. Now
kQT(l_a)Na_l < k2r(1—a)(k2rN0)a—1 — kaNngl <e,

again by the choice of Nyg. We have obtained

a
7N>

N> (- - ¢

for all N > Nyk. Since € was arbitrary the proof is complete. ]
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