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Abstract

For given graphsG andH, let |Hom(G,H)| denote the set of graph homomor-
phisms fromG to H. We show that for any finite,n-regular, bipartite graphG and any
finite graphH (perhaps with loops),|Hom(G,H)| is maximum whenG is a disjoint
union ofKn,n’s. This generalizes a result of J. Kahn on the number of independent
sets in a regular bipartite graph. We also give the asymptotics of the logarithm of
|Hom(G,H)| in terms of a simply expressed parameter ofH.

We also consider weighted versions of these results which may be viewed as state-
ments about the partition functions of certain models of physical systems with hard
constraints.

1 Introduction

Let G be ann-regular,N-vertex bipartite graph on vertex setV (G), and letH be a fixed
graph on vertex setV (H) (perhaps with loops). We will always useu, v for the vertices of
G andi,j for those ofH. Set

Hom(G, H) = {f : V (G) → V (H) : u ∼ v ⇒ f(u) ∼ f(v)}.

That is,Hom(G, H) is the set of graph homomorphisms fromG to H. (For graph theory
basics, see e.g. [2], [5]).

WhenH = Hind consists of one looped and one unlooped vertex connected by an edge,
an element ofHom(G, Hind) can be thought of as a specification of an independent set (a
set of vertices spanning no edges) inG. Our point of departure is the following result of
Kahn [7], bounding the number of independent sets in regularbipartite graphs. For any
graphG, write I(G) for the set of independent sets ofG.
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Theorem 1.1 For any n-regular, N-vertex bipartite graph G,

|I(G)| ≤ (2n+1 − 1)N/2n.

An approximate version of Theorem 1.1 —log |I(G)| ≤ (1/2+o(1))N , whereo(1) →
0 asn → ∞ — for generaln-regular,N-vertexG was earlier proved by Alon [1]. Note
that |Hom(Kn,n, Hind)| = 2n+1 − 1 (whereKn,n is the complete bipartite graph withn
vertices on each side), so we may paraphrase Theorem 1.1 by saying that|Hom(G, Hind)|
is maximum whenG is a disjoint union ofKn,n’s. Our main result is a generalization of
this statement (and our proof is a generalization of Kahn’s).

Proposition 1.2 For any n-regular, N-vertex bipartite G, and any H ,

|Hom(G, H)| ≤ |Hom(Kn,n, H)|N/2n.

Somewhat surprisingly, we can also exhibit a lower bound that is good enough to al-
low us to obtain the asymptotics oflog |Hom(G, H)| for fixed H asn → ∞ (here, and
throughout the rest of the paper, we uselog for the base2 logarithm). To state the result, it
is convenient to introduce a parameter ofH that is very closely related to|Hom(Kn,n, H)|,
but is easier to work with. Set

η(H) = max{|A||B| : A, B ⊆ V (H), i ∼ j ∀i ∈ A, j ∈ B}.

(WhenH is loopless, this is the maximum number of edges in a completebipartite subgraph
of H. Peeters [10] has recently shown that determiningη(H), even whenH is bipartite, is
NP-complete.)

Proposition 1.3 For any n-regular, N-vertex bipartite G, and any H ,

log η(H)

2
≤

log |Hom(G, H)|

N
≤

log η(H)

2
+

|V (H)|

2n
.

We use the example ofH = Kk, the complete graph onk vertices, to illustrate the
definition ofη. It is easy to see that for anyA, B ⊆ V (Kk), we havei ∼ j ∀i ∈ A, j ∈ B
iff A and B are disjoint, and so|A||B| is maximum when|A| and |B| are as close as
possible tok/2. Henceη(Kk) = bk/2cdk/2e. Since an element ofHom(G, Kk) is exactly
a properk coloring ofG, we get as a corollary of Proposition 1.3 an approximate count of
the number ofk-colorings of a regular bipartite graph.

Corollary 1.4 For any n-regular, N-vertex bipartite G,

|Hom(G, Kk)| = (bk/2cdk/2e)N(1/2+o(1)) .
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We now consider weighted versions of Propositions 1.2 and 1.3. Following [3], we put
a measure onHom(G, H) as follows. To eachi ∈ V (H) assign a positive “activity”λi,
and writeΛ for the set of activities. Give eachf ∈ Hom(G, H) weight

wΛ(f) =
∏

v∈V (G)

λf(v).

The constant that turns this assignment of weights onHom(G, H) into a probability distri-
bution is

ZΛ(G, H) =
∑

f∈Hom(G,H)

wΛ(f).

When all activities are1, we haveZΛ(G, H) = |Hom(G, H)|, and so the following is a
generalization of Proposition 1.2.

Proposition 1.5 For any n-regular, N-vertex bipartite G, any H , and any system Λ of
positive activities on V (H),

ZΛ(G, H) ≤
(

ZΛ(Kn,n, H)
)N/2n

.

It was observed in [3] thatZΛ(G, H) may be related to|Hom(G, H ′)| for an appro-
priate modificationH ′ of H. That observation (which will be discussed in more detail in
Section 3) is central to the proof of Proposition 1.5.

Proposition 1.3 also generalizes. For a set of activitiesΛ onV (H), set

ηΛ(H) = max

{(

∑

i∈A

λi

)(

∑

j∈B

λj

)

: A, B ⊆ V (H), i ∼ j ∀i ∈ A, j ∈ B

}

.

Proposition 1.6 For any n-regular, N-vertex bipartite G, any H , and any system Λ of
positive activities on V (H),

log ηΛ(H)

2
≤

log ZΛ(G, H)

N
≤

log ηΛ(H)

2
+

|V (H)|

2n
.

We may put these results in the framework of a well-known mathematical model of
physical systems with “hard constraints” (see [3]). These are systems with strictly for-
bidden configurations. An example is the hard-core lattice gas model, in which a legal
configuration of particles on a lattice is precisely one in which no two adjacent lattice sites
are occupied. (By way of contrast, consider the ferromagnetic Ising model, where adjacent
particles are discouraged from having opposing spins, but not forbidden — this is a “soft
constraint”.)

We think of the vertices ofG as particles and the edges as bonds between pairs of
particles, and we think of the vertices ofH as possible “spins” that particles may take.
Pairs of vertices ofG joined by a bond may have spinsi and j only wheni and j are
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adjacent inH (in particular, they may both have spini only wheni has a loop inH). Thus
the legal spin configurations on the vertices ofG are precisely the homomorphisms from
G to H. We think of the activities on the vertices ofH as a measure of the likelihood of
seeing the different spins; the probability of a particularspin configuration is proportional
to the product over the vertices ofG of the activities of the spins. Propositions 1.5 and
1.6 concern the “partition function” of this model — the normalizing constant that turns
the above-described system of weights on the set of legal configurations into a probability
measure.

The results we actually prove are in a slightly more general weighted model. Write
EG andOG for the partition classes ofG, and to eachi ∈ V (H) assign a positivepair of
activities(λi, µi). Write (Λ, M) for the set of activities. Give eachf ∈ Hom(G, H) weight

w(Λ,M)(f) =
∏

v∈EG

λf(v)

∏

v∈OG

µf(v).

The constant that turns this assignment of weights onHom(G, H) into a probability distri-
bution is

Z(Λ,M)(G, H) =
∑

f∈Hom(G,H)

w(Λ,M)(f). (1)

A special case of this model was considered by Kahn [8] (see also [6]), where Theorem
1.1 was extended to

Theorem 1.7 For any n-regular, N-vertex bipartite G, and any λ, µ ≥ 1,
∑

I∈I(G)

∏

v∈EG

λ|I∩EG|
∏

v∈OG

µ|I∩OG| ≤ ((1 + λ)n + (1 + µ)n − 1)N/2n.

It was conjectured in [8] that the assumptionλ, µ ≥ 1 may be relaxed toλ, µ ≥ 0. We
show that this is indeed true, by generalizing Proposition 1.5 to:

Proposition 1.8 For any n-regular, N-vertex bipartite G, any H , and any system (Λ, M)
of positive activities on V (H),

Z(Λ,M)(G, H) ≤
(

Z(Λ,M)(Kn,n, H)
)N/2n

.

We also generalize Proposition 1.6 to this setting. Set

η(Λ,M)(H) = max

{(

∑

i∈A

λi

)(

∑

j∈B

µj

)

: A, B ⊆ V (H), i ∼ j ∀i ∈ A, j ∈ B

}

.

Proposition 1.9 For any n-regular, N-vertex bipartite G, any H , and any system (Λ, M)
of positive activities on V (H),

log η(Λ,M)(H)

2
≤

log Z(Λ,M)(G, H)

N
≤

log η(Λ,M)(H)

2
+

|V (H)|

2n
.
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Proposition 1.8 generalizes to the case of biregularG (a bipartite graphG with partition
classesEG andOG is (a, b)-biregular if all vertices inEG have degreea and all inOG have
degreeb). The proof of the following proposition, which is a straightforward modification
of the proof of Proposition 1.8, is omitted.

Proposition 1.10 For any (a, b)-biregular, N-vertex, bipartite G, any H , and any system
(Λ, M) of positive activities on V (H),

Z(Λ,M)(G, H) ≤
(

Z(Λ,M)(Ka,b, H)
)N/(a+b)

.

It was conjectured in [7] that Theorem 1.1 remains true without the assumption thatG
is bipartite. We similarly conjecture that biparticity is unnecessary in Proposition 1.8, and
hence also in Propositions 1.2 and 1.5. (Proposition 1.3, and hence also Propositions 1.6
and 1.9, is easily seen to fail for non-bipartiteG.)

The proof of Proposition 1.8 requires entropy considerations; these are reviewed in
Section 2. The proofs are then given in Section 3.

2 Entropy

Here we briefly review the relevant entropy material. Our treatment is mostly copied from
[7]. For a more thorough discussion, see e.g. [9].

In what followsX, Y etc. are discrete random variables, which in our usage are allowed
to take values in any finite set.

Theentropy of the random variableX is

H(X) =
∑

x

p(x) log
1

p(x)
,

where we writep(x) for P(X = x) (and extend this convention in natural ways below).
Theconditional entropy of X givenY is

H(X|Y) = EH(X|{Y = y}) =
∑

y

p(y)
∑

x

p(x|y) log
1

p(x|y)
.

Notice that we are also writingH(X|Q) with Q an event (in this caseQ = {Y = y}):

H(X|Q) =
∑

p(x|Q) log
1

p(x|Q)
.

When we condition on a random variable and an event simultaneously, we use “;” to sepa-
rate the two.

For a random vectorX = (X1, . . . ,Xn) (note this is also a random variable), we have

H(X) = H(X1) + H(X2|X1) + · · ·+ H(Xn|X1, . . . ,Xn−1). (2)
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We will make repeated use of the inequalities

H(X) ≤ log |range(X)| (with equality ifX is uniform), (3)

H(X|Y) ≤ H(X),

and more generally,

if Y determinesZ thenH(X|Y) ≤ H(X|Z). (4)

Note that (2) and (4) imply

H(X) ≤ H(Y) + H(X|Y)

and
H(X1, . . . ,Xn) ≤

∑

H(Xi) (5)

We also have a conditional version of (5):

H(X1, . . . ,Xn|Y) ≤
∑

H(Xi|Y).

We will also need the following lemma of Shearer (see [4, p. 33]). For a random vector
X = (X1, . . . ,Xm) andA ⊆ [m], setXA = (Xi : i ∈ A).

Lemma 2.1 Let X = (X1, . . . ,Xm) be a random vector and A a collection of subsets
(possibly with repeats) of [m], with each element of [m] contained in at least t members of
A. Then

H(X) ≤
1

t

∑

A∈A

H(XA).

3 Proofs

We begin by setting up some conventions. For a regular, bipartite graphG, we writeEG

andOG for the partition classes. For ease of notation, we writeEn for EKn,n
andOn for

OKn,n
.

For a partitionU ∪ L of V (H), set

HomU,L(G, H) = {f ∈ Hom(G, H) : f(EG) ⊆ U, f(OG) ⊆ L}.

(For a setX we writef(X) for {f(x) : x ∈ X}.)
We begin by deriving a useful expression for|HomU,L(Kn,n, H)|. For eachA ⊆ L set

H(A) = {f ∈ HomU,L(Kn,n, H) : f(On) = A},

T (A) = {g : [n] → A : g surjective}
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and
CU(A) = {j ∈ U : j ∼ i ∀i ∈ A}.

(Observe thatCU(A) is the set of all possible images ofv ∈ EG under a member of
HomU,L(G, H), given that the image ofN(v) is A.) It is easy to see that{H(A) :
A ⊆ L} forms a partition ofHomU,L(Kn,n, H), and also that for eachA, |H(A)| =
|T (A)||CU(A)|n. Thus we have

|HomU,L(Kn,n, H)| =
∑

A⊆L

|T (A)||CU(A)|n. (6)

The following is the central lemma in the proofs of Propositions 1.8 and 1.9. The proof
is based on [7, Thm. 1.9].

Lemma 3.1 For any n-regular, N-vertex bipartite G, and any H with U ∪L a partition of
V (H),

|HomU,L(G, H)| ≤ |HomU,L(Kn,n, H)|N/2n.

Proof: Let f be chosen uniformly fromHomU,L(G, H). Forv ∈ V (G), write fv for f(v),
Nv for f |N(v) andMv for {fw : w ∈ N(v)}. For v ∈ EG andA ⊆ L, write mv(A) for
P(Mv = A). (Note that

∑

A mv(A) = 1.) We have (with the main inequalities justified
below; the remaining steps follow in a straightforward way from the material of Section 2)

log |HomU,L(G, H)| = H(f)

= H(f |OG
) + H(f |EG

| f |OG
)

≤ H(f |OG
) +

∑

v∈EG

H(fv | f |OG
)

≤ H(f |OG
) +

∑

v∈EG

H(fv | Nv)

≤
1

n

∑

v∈EG

H(Nv) +
∑

v∈EG

H(fv | Nv) (7)

≤
1

n

∑

v∈EG

[H(Mv) + H(Nv|Mv)] +
∑

v∈EG

H(fv | Nv)

≤
1

n

∑

v∈EG

[H(Mv) + H(Nv|Mv) + nH(fv|Nv)]

≤
1

n

∑

v∈EG

∑

A⊆L

[

mv(A) log
1

mv(A)
+

mv(A)H(Nv|{Mv = A}) +

nmv(A)H(fv|Nv; {Mv = A})
]
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≤
1

n

∑

v∈EG

∑

A⊆L

[

mv(A) log
1

mv(A)
+

mv(A) log |T (A)| +

nmv(A) log |CU(A)|
]

(8)

=
1

n

∑

v∈EG

∑

A⊆L

mv(A) log
|T (A)||CU(A)|n

mv(A)

≤
1

n

∑

v∈EG

log

[

∑

A⊆L

|T (A)||CU(A)|n

]

(9)

=
N

2n
log |HomU,L(Kn,n, H)|. (10)

The main inequality (7) involves an application of Lemma 2.1, withA = {N(v) : v ∈ EG},
and (9) is an application of Jensen’s inequality. In (8), we use (3), noting that conditioning
on the event{Mv = A} there are|T (A)| possible values forNv, and|CU(A)| possible
values forfv. Finally, (10) follows from (6). 2

It is worth noting at this point that Lemma 3.1 easily impliesProposition 1.2. LetH ′

be the graph on vertex set∪i∈V (H){vi, wi} with vi andwj adjacent exactly wheni andj
are adjacent inH. SetU = {v1, . . . , v|V (H)|} andL = {w1, . . . , w|V (H)|}. It is easy to
check that|Hom(G, H)| = |HomU,L(G, H ′)|, from which Proposition 1.2 follows via an
application of Lemma 3.1.

This idea of “doubling”H, combined with the construction of [3] that relatesZΛ(G, H)
to |Hom(G, H ′)| for an appropriate modificationH ′ of H, allows us to pass from Proposi-
tion 1.2 to Proposition 1.8. The details are as follows.

Recall that our aim is to upper bound the partition functionZ(Λ,M)(G, H) (see (1)).
By continuity, we may assume that all activities are rational. Let C be the least positive
integer such thatCλi andCµi are integers for eachi ∈ V (H). Let H(Λ,M) be the graph
whose vertex set is obtained fromH by replacing eachi ∈ V (H) by two sets,DU

i =
{iU1 , . . . , iUCλi

} andDL
i = {iL1 , . . . , iLCµi

} of Cλi andCµi vertices. For eachi, j ∈ V (H)
(not necessarily distinct),i′ ∈ DU

i and j′ ∈ DL
j , join i′ to j′ exactly wheni and j are

adjacent inH. SetU = U(H(Λ,M)) = ∪i∈V (H)D
U
i andL = L(H(Λ,M)) = ∪i∈V (H)D

L
i .

We wish to relateZ(Λ,M)(G, H) to |HomU,L(G, H (Λ,M))|. Say that a functiong ∈
HomU,L(G, H (Λ,M)) is alift of f ∈ Hom(G, H) if for all v ∈ V (G),

g(v) =

{

f(v)U
k , some1 ≤ k ≤ Cλf(v) if v ∈ EG,

f(v)L
k , some1 ≤ k ≤ Cµf(v) if v ∈ OG.

Set
G(f) = {g ∈ HomU,L(G, H (Λ,M)) : g is a lift of f}.

It is easy to check that|G(f)| = w(Λ,M)(f)CN for eachf ∈ Hom(G, H), and that{G(f) :
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f ∈ Hom(G, H)} forms a partition ofHomU,L(G, H (Λ,M)). From this it follows that

Z(Λ,M)(G, H) =
|HomU,L(G, H (Λ,M))|

CN
. (11)

We now have all we need to prove Propositions 1.8 and 1.9.
Proof of Proposition 1.8: Applying (11) withG = Kn,n we get

Z(Λ,M)(Kn,n, H) =
|HomU,L(Kn,n, H

(Λ,M))|

C2n
. (12)

Proposition 1.8 now follows from (11), (12) and Lemma 3.1. 2

Proof of Proposition 1.9: For eachA ⊆ V (H), setC(A) = {j ∈ H : j ∼ i ∀i ∈ A} and

D(A) = {f ∈ Hom(Kn,n, H) : f(En) ⊆ A, f(On) ⊆ C(A)}.

By Proposition 1.8 we have

(

Z(Λ,M)(G, H)
)2n/N

≤ Z(Λ,M)(Kn,n, H)

≤
∑

A⊆V (H)

∑

f∈D(A)

w(Λ,M)(f)

=
∑

A⊆V (H)

(

∑

i∈A

λi

)n




∑

j∈C(A)

µj





n

≤ 2|V (H)|
(

η(Λ,M)(H)
)n

. (13)

This gives the upper bound. For the lower bound, letA, B ⊆ V (H) satisfyingi ∼ j ∀i ∈
A, j ∈ B be such that

η(Λ,M)(H) =

(

∑

i∈A

λi

)(

∑

j∈B

µj

)

.

We have

Z(Λ,M)(G, H) ≥
∑

{w(Λ,M)(f) : f(EG) ⊆ A, f(OG) ⊆ B}

=

(

∑

i∈A

λi

)N/2(
∑

j∈B

µj

)N/2

= η(Λ,M)(H)N/2.

2
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