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Abstract

We consider �nite-state Markov chains that can be naturally decom-

posed into smaller \projection" and \restriction" chains. Possibly this

decomposition will be inductive, in that the restriction chains will be

smaller copies of the initial chain. We provide expressions for Poincar�e

(respectively, log-Sobolev) constants of the initial Markov chain in terms

of Poincar�e (respectively, log-Sobolev) constants of the projection and

restriction chains, together with further parameter. In the case of the

Poincar�e constant, our bound is always at least as good as existing ones,

and, depending on the value of the extra parameter, may be much better.

There appears to be no previously published decomposition result for the

log-Sobolev constant. Our proofs are elementary and self-contained.
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1 The setting

In a number of applications, one is interested in �nding tight, non-asymptotic

upper bounds on the mixing time, i.e., rate of convergence to stationarity, of

�nite-state Markov chains. One important example arises in the analysis of

\Markov chain Monte Carlo" algorithms. These are algorithms for sampling and

counting combinatorial structures that are founded on Markov chain simulation.

The eÆciency of these algorithms depends crucially on the rate of convergence

to stationarity of the Markov chain being simulated.

In proving rapid convergence to stationarity, Poincar�e and latterly log-

Sobolev inequalities have proved powerful tools. The larger the constants in

these inequalities, the faster the convergence to stationarity. (These and other

informal remarks will be made rigorous in the following section.) Here we con-

sider �nite-state Markov chains whose description suggests a natural state-space

partition. This partition naturally induces a number of restriction chains, in

which transitions are restricted to occur within blocks of the partition, and

a projection chain, whose states are the blocks themselves. The hope is that

by computing Poincar�e or log-Sobolev constants for the restriction and projec-

tion chains we can obtain a Poincar�e or log-Sobolev constant for the original

chain. Various authors, including Madras, Martin and Randall [15, 14, 13],

have investigated this approach.

Sometimes it may be possible to apply the decomposition step inductively,

as was done by Cooper, Dyer, Frieze and Rue [4] in the context of spin models

on \narrow grids", and by Jerrum and Son [9] for the \bases-exchange walk"

for balanced matroids. In these applications, it is particularly important that

our arguments give as little as possible away at each decomposition step.

Clearly there is a need for general decomposition theorems that relate, say,

the Poincar�e constant � of the original chain as tightly as possible to those

of the restriction and projection chains. The existing decomposition theorems

of this sort seem all to rest ultimately on an unpublished result of Caracciolo,

Pelissetto and Sokal [1]. (Note, however, that a statement of their result and

a version of their proof have been published as an appendix to an article of

Madras and Randall [13].)

Our �rst goal, then, is to provide an elementary, self-contained and acces-

sible account of the basic decomposition result. However, in developing the

result from �rst principles we �nd we can derive a statement that is consid-

erably sharper than the current ones in many situations. For example, in the

context of inductively de�ned Markov chains, existing decomposition results

cannot yield inverse polynomial bounds on � (and hence polynomial bounds

on mixing time), even when the depth of the induction is logarithmic. In con-

trast we are able to give inverse polynomial bounds on � for inductively de�ned

Markov chains, and are even able to recover the result of Jerrum and Son [9]

on the bases-exchange walk for balanced matroids, where the depth of the in-

duction is linear in some natural measure of the input size.

It transpires that the proof of the decomposition result for the Poincar�e

constant carries over straightforwardly to the log-Sobolev constant. In many

situations the optimal log-Sobolev constant seems to be within a small constant
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factor of the optimal Poincar�e constant (spectral gap); the advantage of the log-

Sobolev constant in these situations is that it translates to a tighter bound on

mixing time (construed as the time to convergence to near-stationarity in `1
norm). To the best of our knowledge, this is the �rst general decomposition

result for log-Sobolev inequalities, though it should be mentioned that Cesi [2]

has an argument that applies when the state-space is a Cartesian product.

We have stated our results for �nite state Markov chains, since that seems to

be the natural setting given the potential applications to Markov chain Monte

Carlo algorithms. But everything extends (with no notational change) to count-

ably in�nite state spaces and (with appropriate notational changes and possible

regularity conditions) to uncountable state spaces.

2 Poincar�e constant via decomposition

Consider an ergodic Markov chain on �nite state space 
 with transition prob-

abilities P : 
 � 
 ! [0; 1] and stationary distribution � : 
 ! [0; 1]. We

assume that the Markov chain is time reversible, that is to say it satis�es the

detailed balance condition

�(x)P (x; y) = �(y)P (y; x) for all x; y 2 
.

Let 
 = 
0 [ � � � [
m�1 be a decomposition of the state space into m disjoint

sets. As usual, we use [m] := f0; : : : ;m � 1g to denote the �rst m natural

numbers.

Following Martin and Randall [15], de�ne �� : [m] ! [0; 1] by ��(i) =P
x2
i

�(x), and P : [m]� [m]! [0; 1] by

P (i; j) := ��(i)�1
X

x2
i; y2
j

�(x)P (x; y):

The Markov chain on state space [m] and with transition probabilities P is

the projection chain induced by the partition f
ig. Since the original Markov

chain is time-reversible, so is the projection chain. It is easy to check, using

this observation, that the projection chain has �� as a stationary distribution.

For each i 2 [m] the restriction Markov chain on 
i has transition proba-

bilities Pi : 
i �
i ! [0; 1] de�ned by

Pi(x; y) =

(
P (x; y); if x 6= y;

1�
P

z2
infxg
P (x; z); if x = y.

Again, the restriction chain inherits time-reversibility from the original chain,

and so it has �i : 
i ! [0; 1] as a stationary distribution, where �i(x) =

�(x)=��(i). In applications, we require the projection chain and all the restric-

tion chains to be irreducible; generally they will also be aperiodic, in which case

the various stationary distributions �� and �0; : : : ; �m�1 will be unique.

Let f : 
 ! R be an arbitrary test function. The expectation and variance

of f with respect to � are of course given by

E� f :=
X
x2


�(x)f(x)
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and

Var� f :=
X
x2


�(x)(f(x)� E� f)
2

respectively. The Dirichlet form associated with f and P is de�ned as

E�(f; f) :=
1

2

X
x;y2


�(x)P (x; y)(f(x) � f(y))2:

Consider now a Poincar�e inequality of the form

E�(f; f) � �Var� f; (1)

that holds uniformly over all f : 
 ! R, with � > 0 being the correspond-

ing Poincar�e constant. It is well known that a lower bound on � translates

directly to an upper bound on mixing time of a Markov chain. To avoid techni-

cal problems associated with nearly periodic Markov chains, assume that loop

probabilities are uniformly bounded away from 0.1 Denote by P t(x; �) the t-step
distribution of the chain, given that x 2 
 is the initial state. Then there is a

function t : 
 � (0; 1]! N with

t(x; ") = O

�
1

�

�
ln

1

�(x)
+ ln

1

"

��
; (2)

such that kP t(x;")(x; �) � �kTV � ", where k � kTV is total variation norm (i.e.,

half the `1-norm). For a proof of this claim that is valid for general (i.e., not

necessarily time-reversible) Markov chains, refer to [8, x5.2], interpreting % there
as the reciprocal of our �.

Observe that in our notation for expectation, variance, etc., we make ex-

plicit the probability distribution � as a subscript, as this will vary throughout

our proofs. For example, we may write Poincar�e inequalities for the projec-

tion and restriction chains as E ��( �f; �f) � ��Var�� �f and E�i(f; f) � �iVar�i f ,

respectively. Naturally, �� (respectively, �i) is to be considered as a probability

distribution on [m] (respectively 
i), and �f as a function on [m].

Suppose the projection chain and the various restriction chains satisfy Poin-

car�e inequalities with constants ��, and �0; : : : ; �m�1 respectively. De�ne �min =

mini �i. We are interested in obtaining a Poincar�e inequality for the original

Markov chain, with Poincar�e constant � = �(��; �min; ), where  is a further

parameter

 := max
i2[m]

max
x2
i

X
y2
n
i

P (x; y): (3)

Of course, we'd like � to be as large as possible. Informally,  is the probability

of escape in one step from the current block of the partition, maximised over all

states. Given this interpretation, it is clear that  never exceeds 1, and may be

much smaller in many applications. It is in these applications that we improve

on existing decomposition bounds.

1
Alternatively, interpret P (�; �) as the transition rates of a continuous-time Markov chain

on 
.
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Theorem 1. Consider a �nite-state time-reversible Markov chain decomposed

into a projection chain and m restriction chains as above. Suppose the projec-

tion chain satis�es a Poincar�e inequality with constant ��, and the restriction

chains satisfy inequalities with uniform constant �min. Let  be de�ned as in

(3). Then the original Markov chain satis�es a Poincar�e inequality with con-

stant

� := min

� ��

3
;
���min

3 + ��

�
:

Proof. Consider an arbitrary test function f : 
 ! R. Our starting point

is the following decomposition of Var� f with respect to the partition 
 =


0 [ � � � [
m�1:

Var� f =
X
i2[m]

��(i)Var�i f +
X
i2[m]

��(i)(E�i f � E� f)
2; (4)

and a similar decomposition of the Dirichlet form:

E�(f; f) =
X
i2[m]

��(i) E�i(f; f) +
1

2

X
i;j2[m]; i6=j

Cij; (5)

where

Cij :=
X

x2
i; y2
j

�(x)P (x; y)(f(x) � f(y))2:

Identity (5) is almost content-free, and comes from partitioning the terms in

the de�nition of E�(f; f) according to whether i and j are in the same or

in di�erent blocks of the partition. Identity (4) has a little more substance,

but is nevertheless standard, and can be obtained through simple algebraic

manipulation. It states informally that the variance of f may be obtained by

summing the variances within blocks of the partition and the variance between

blocks.

In summations, etc., variables i and j will always range over [m], so we shall

not be explicit about their range in what follows. For all i; j with i 6= j and

P (i; j) > 0, de�ne �̂
j
i : 
i ! [0; 1] by

�̂
j
i (x) :=

�i(x)
P

y2
j
P (x; y)

P (i; j)
:

Note that �̂
j
i is a probability distribution on 
i.

The �rst term on the rhs of (4) we simply bound as follows:X
i

��(i)Var�i f �
X
i

1

�i
��(i) E�i(f; f) �

1

�min

X
i

��(i) E�i(f; f): (6)

The second we transform, starting with an application of the Poincar�e inequality

for the projection chain:X
i

��(i)(E�i f � E� f)
2

� 1

2��

X
i6=j

��(i)P (i; j)(E�i f � E�j f)
2
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� 3

2��

X
i6=j

��(i)P (i; j)

�
�
(E�i f � E

�̂
j
i
f)2 + (E

�̂
j
i
f � E�̂ij

f)2 + (E�̂ij
f � E�j f)

2
�

=
3

2��

�
�1 +�2 +�3

�
; (7)

where

�1 :=
X
i6=j

��(i)P (i; j)(E�i f � E
�̂
j
i
f)2;

etc. We proceed to bound �1; �2; �3 separately, noting that �1 = �3 are equal

by time reversibility. For the second of these we have:

�2 =
X
i6=j

��(i)P (i; j)

2
4 X
x2
i; y2
j

�(x)P (x; y)

��(i)P (i; j)
(f(x)� f(y))

3
5
2

(8)

�
X
i6=j

��(i)P (i; j)
X

x2
i; y2
j

�(x)P (x; y)

��(i)P (i; j)
(f(x)� f(y))2 (9)

=
X
i6=j

X
x2
i; y2
j

�(x)P (x; y)(f(x) � f(y))2

=
X
i6=j

Cij ; (10)

where (8) uses the fact that �(x)P (x; y)=��(i)P (i; j) is a joint distribution on


i �
j whose marginals are �̂
j
i and �̂

i
j , and (9) is seen to be Cauchy-Schwarz,

once we have noted that X
x2
i; y2
j

�(x)P (x; y)

��(i)P (i; j)
= 1;

by de�nition.

Now for �1. Using standard facts about variance,

Var
�̂ji
f = Var

�̂ji
(f � E�i f)

=
X
x2
i

�̂
j
i (x)(f(x)� E�i f)

2 � (E
�̂ji
f � E�i f)

2; (11)

so that certainly

(E
�̂ji
f � E�i f)

2 �
X
x2
i

�̂
j
i (x)(f(x)� E�i f)

2: (12)

Thus for we have the bound:

�1 �
X
i6=j

��(i)P (i; j)
X
x2
i

�̂
j
i (x)(f(x)� E�i f)

2

=
X
i

��(i)
X
x2
i

�i(x)(f(x)� E�i f)
2
X
j:j 6=i

�̂
j
i (x)P (i; j)

�i(x)
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=
X
i

��(i)
X
x2
i

�i(x)(f(x)� E�i f)
2
X
j:j 6=i

P (x;
j) (13)

� 
X
i

��(i)Var�i f: (14)

� 

�min

X
i

��(i) E�i(f; f): (15)

where (13) applies the de�nition of �̂
j
i , (14) the de�nition of , and (15) the

Poincar�e inequalities for the restriction chains.

Substituting (10) and (15) in (7), and recalling that �1 = �3, we haveX
i

��(i)(E�i f � E� f)
2 � 3

2��

X
i6=j

Cij +
3

���min

X
i

��(i) E�i(f; f): (16)

Then substituting (6) and (16) into (4) yields

Var� f �
3

2��

X
i6=j

Cij +
3 + ��
���min

X
i

��(i) E�i(f; f): (17)

Finally, comparing (17) with (5), we see that

E�(f; f) � �Var� f;

where � is as in the statement of the theorem.

The �rst thing to remark is that  � 1, so that always � = 
(���min),

matching existing decomposition results (e.g., Caracciolo et al.). It may be the

case that  is indeed a constant (e.g., decompose a random walk on [n] into

k random walks on [n=k], where we assume for convenience that k divides n).

In this case  = 1
2 , and we get no improvement over existing bounds.

At the other extreme, there are situations, for example, spin systems on

fragments of the Bethe lattice or narrow grids, where  and �� are of the same

order of magnitude. Applying Theorem 1 inductively then yields bounds on

spectral gap that are inverse polynomial in the problem size n, provided the

depth of recursion is O(log n). Section 4.3 will treat such an example.

This seems about the best that can be achieved using a parameter as

\global" as . To go further, we need a much stricter pointwise constraint

on the distributions �̂
j
i . For example, if we know that

(1� �)�i � �̂ji � (1 + �)�i; (18)

pointwise, whenever �̂
j
i is de�ned (i.e., whenever P (i; j) > 0), then

(E�i f � E
�̂
j
i
f)2 � (1 + �)Var�i f �Var

�̂
j
i
f (19)

� (1 + �)Var�i f � (1� �)
X
x2
i

�i(x)(f(x)� E
�̂
j
i
f)2

� (1 + �)Var�i f � (1� �)Var�i f (20)

= 2�Var�i f; (21)
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where (19) comes from (11), and (20) from the fact that
P

x2
i
�i(x)(f(x)��)2

is minimised at � = E�i f . Introducing the modi�ed parameter

̂ := 2�max
i2[m]

X
j:j 6=i

P (i; j) (22)

we obtain:

Corollary 2. Suppose that (18) is satis�ed for some � > 0, and that ̂ is as

de�ned as in (22). Then Theorem 1 holds with ̂ replacing .

Proof. Simply use (21) in place of (12) in the derivation of inequality (15).

Note that ̂ may even be 0 (which happens if � = 0), as in the case of the

n-dimensional Boolean cube. When that happens, �1 = �3 = 0 and we save a

factor 3 in the argument, leading to:

Corollary 3. If ̂ = 0, then Theorem 1 holds with � := minf��; �ming.

For the Boolean cube, Corollary 3 immediately gives the exact bound on

spectral gap. Even when ̂ > 0 we may be able to compare the given Markov

chain with one with reduced transition probabilities for which ̂ = 0. E.g., in the

case of the bases-exchange walk on a balanced matroid, we may \thin down" the

transition probabilities between 
i and 
j until they form a fractional matching

(which is possible by a result of Feder and Mihail). Thus we recover the known

bound on spectral gap for balanced matroids. All this will be covered in detail

in x4.5.

3 Log-Sobolev constant via decomposition

The programme described above extends to the log-Sobolev constant with little

work. Following Diaconis and Salo�-Coste [5] (and others) de�ne the entropy-

like quantity

L�(f) := E�
�
f2
�
ln f2 � ln(E� f

2)
��
: (23)

Again, we indicate the probability distribution � explicitly as a subscript, so

we can talk about L�i(f), etc. A log-Sobolev inequality is an inequality of the

form

E�(f; f) � �L�(f)

that holds for all f : 
 ! R. The motivation for studying the log-Sobolev

constant � is the following analogue of (2)

t(x; ") = O

�
1

�

�
ln ln

1

�(x)
+ ln

1

"

��
; (24)

which provides an estimate, this time in terms of �, for the number of steps

suÆcient to achieve kP t(x;")(x; �) � �kTV � ". (To avoid trivialities, assume

�(x) � e�1 in (24).) The estimate (24) of mixing time may be read o� from

[5, (3.3)] assuming loop probabilities are bounded away from 0. (Diaconis and

Salo�-Coste work in continuous time, avoiding potential problems associated
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with nearly periodic Markov chains.) The key point to note is that ln(1=�(x))

in (2) is replaced by ln ln(1=�(x)) in (24). This may not seem like a major

improvement until we recall that �(x) is typically exponentially small as a

function of instance size.

Our aim, then, is to �nd � = �(��; �min; ) satisfying

E�(f; f) � �L�(f):

Obviously we want � to be as large as possible. Our analogue of Theorem 1 is:

Theorem 4. The setting is exactly as in Theorem 1. Suppose the projec-

tion chain satis�es a log-Sobolev inequality with constant ��, and the restric-

tion chains satisfy inequalities with uniform constant �min. Then the original

Markov chain satis�es a log-Sobolev inequality with constant

� := min

�
��

3
;
���min

3 + ��

�
:

Proof. Just as with variance, L�(f) may be decomposed with respect to the

partition 
 = 
0 [ � � � [
m�1, the analogue of identity (4), being

L�(f) =
X
i

��(i)L�i(f) +
X
i

��(i)(E�i f
2)
�
ln(E�i f

2)� ln(E� f
2)
�
: (25)

As L�(f) is a less familiar quantity than variance, we o�er, in an addendum,

a derivation not only of (25) but also of a number of other identities and in-

equalities used in this section. By analogy with (4), the �rst term expresses the

\entropy within blocks" of the partition, and the second the \entropy between

blocks." (Compare the second term in (25) with the rhs of (23), observing howp
E�i f

2 is now the appropriate \averaging of f" over 
i, taking on the role

of E�i f in the earlier calculation.) The decomposition of entropy expressed

in (25) has been exploited by other authors, for example Lee and Yau [12].

We deal with the �rst term exactly as before:

X
i

��(i)L�i(f) �
X
i

1

�i
��(i) E�i(f; f) �

1

�min

X
i

��(i) E�i(f; f): (26)

The second we transform, in an analogous manner to (7), starting with an

application of the log-Sobolev inequality for the projection chain:

X
i

��(i)(E�i f
2)
�
ln(E�i f

2)� ln(E� f
2)
�

� 1

2��

X
i6=j

��(i)P (i; j)
�q

E�i f
2 �

q
E�j f

2
�2
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� 3

2��

X
i6=j

��(i)P (i; j)

� �q
E�i f

2 �
q
E
�̂
j
i
f2
�2

�q
E
�̂
j
i
f2 �

q
E�̂ij

f2
�2

+
�q

E�̂ij
f2 �

q
E�j f

2
�2 �

(27)

=
3

2��

�
�1 +�2 +�3

�
; (28)

where

�1 =
X
i6=j

��(i)P (i; j)
�q

E�i f
2 �

q
E
�̂
j
i
f2
�2
;

etc. Tackling �2 �rst, we have:

�2 �
X
i6=j

��(i)P (i; j)
X

x2
i ; y2
j

�(x)P (x; y)

��(i)P (i; j)
(f(x)� f(y))2 (29)

=
X
i6=j

X
x2
i; y2
j

�(x)P (x; y)(f(x) � f(y))2

=
X
i6=j

Cij; (30)

where (29) is Jensen's inequality applied to the convex function g(�; �) := (
p
��p

� )2 de�ned on �; � � 0. (This is an arti�ce borrowed from Kipnis et al [11];

see x3.1 for details, and Lee and Yau [12] for related applications.)

For �1 (which equals �3 by time-reversibility), we have the bound:

�1 �
X
i6=j

��(i)P (i; j)
X

x;y2
i

�i(x)�̂
j
i (y)(f(x)� f(y))

2 (31)

=
X
i

��(i)
X

x;y2
i

�i(x)�i(y)(f(x)� f(y))2
X
j:j 6=i

P (y;
j) (32)

� 2
X
i

��(i)Var�i f (33)

� 2

�min

X
i

��(i) E�i(f; f) (34)

� 

�min

X
i

��(i) E�i(f; f): (35)

where (31) recycles the Jensen arti�ce (see x3.1), (32) applies the de�nition

of �̂
j
i , (33) the de�nition of , (34) the Poincar�e inequalities for the restriction

chains, and �nally (35) the general inequality � � �=2 (see, e.g., Diaconis and

Salo�-Coste [5]) relating Poincar�e and log-Sobolev constants. (Strictly speak-

ing, we must interpret �min here as the minimum over the optimal Poincar�e

constants (i.e., spectral gaps) of the m restriction Markov chains.)

Substituting (30) and (35) into (28), recalling that �1 = �3, we haveX
i

��(i)(E�i f
2)
�
ln(E�i f

2)� ln(E� f
2)
�

� 3

2��

X
i6=j

Cij +
3

���min

X
i

��(i) E�i(f; f): (36)

10



Then substituting (26) and (36) into (25) yields

L�(f) �
3

2��

X
i6=j

Cij +
3 + ��

���min

X
i

��(i) E�i(f; f): (37)

Finally, comparing (37) with (5), we see that

E�(f; f) � �L�(f);

where � is as in the statement of the theorem.

The remarks following the proof of Theorem 1 apply also to Theorem 4. In

particular, if (1� �)�i � �̂ji � (1 + �)�i, then�q
E�i f

2 �
q
E
�̂
j
i
f2
�2
� 2�Var�i f; (38)

using Jensen's inequality again, but this time with an optimal coupling of the

two r.v's (see x3.1), yielding:

Corollary 5. Suppose that (18) is satis�ed for some � > 0, and that ̂ is as

de�ned as in (22). Then Theorem 4 holds with ̂ replacing .

Again, when ̂ = 0 we save a factor 3:

Corollary 6. If ̂ = 0, then Theorem 4 holds with � := minf��; �ming.

3.1 Addendum: proofs of an identity and some inequalities

This addendum contains derivations of some of the possibly less obvious iden-

tities and inequalities used above.

Proof of Identity (25). By appropriate scaling of the function f , it is enough to

establish (25) when E� f
2 = 1. With this simpli�cation,

L�(f) = E�[f
2 ln f2] =

X
i

��(i) E�i [f
2 ln f2]

and X
i

��(i)L�i(f) =
X
i

��(i) E�i
�
f2(ln f2 � ln(E�i f

2)
�
:

Subtracting the latter from the former, we obtain

L�(f)�
X
i

��(i)L�i(f) =
X
i

��(i)(E�i f
2) ln(E�i f

2);

as required.

Proof of Inequality (29). Let X and Y be r.v's taking values in 
i and 
j ,

respectively, and with joint distribution given by

Pr(X = x ^ Y = y) =
�(x)P (x; y)

��(i)P (i; j)
:

11



Thus the marginal distribution of X (respectively Y ) is �̂
j
i (respectively �̂ij).

Since, by calculus, g(�; �) := (
p
��
p
� )2 is convex in �; � � 0, Jensen's inequal-

ity yields�q
E
�̂
j
i
f2 �

q
E�̂ij

f2
�2

=
�p

E[f(X)2]�
p
E[f(Y )2]

�2
� E

�
(f(X)� f(Y ))2

�
=

X
x2
i; y2
j

�(x)P (x; y)

��(i)P (i; j)
(f(x)� f(y))2:

Proof of Inequality (31). As above, but now with X and Y being independent

r.v's with the appropriate distributions.

Proof of Inequality (38). Assume �i 6= �̂
j
i , otherwise there is nothing to demon-

strate.

Let X and Y be r.v's taking values in 
i, with joint distribution satisfying

the following conditions: (i) X has distribution �i, (ii) Y has distribution �̂
j
i ,

and (iii) Pr(X 6= Y ) = k�i � �̂
j
i kTV. It is well know that such an optimal

coupling of two r.v's exists. Denote by

 (x; y) := Pr(X = x ^ Y = y)

the joint distribution of X and Y . De�ne

b (x; y) :=
(
0; if x = y;

 (x; y); otherwise.

Partition 
 into two sets 
 = A [ B such that �i(x) � �̂
j
i (x) > 0 for all

x 2 A, and �̂ji (y) � �i(y) � 0 for all y 2 B. By assumption, A and B are non-

empty. Optimality of the coupling ofX and Y entails
P

y
b (x; y) = maxf�i(x)�

�̂
j
i (x); 0g and

P
x
b (x; y) = maxf�̂ji (y)��i(y); 0g. Thus, by Jensen's inequality,�q

E�i f
2 �

q
E
�̂
j
i
f2
�2

=
�p

E[f(X)2]�
p
E[f(Y )2]

�2
� E

�
(f(X)� f(Y ))2

�
=
X

x;y2
i

b (x; y)(f(x)� f(y))2
� 2

X
x;y2
i

b (x; y)�(f(x)� E�i f)
2 + (f(y)� E�i f)

2
�

� 2�
X
x2A

�i(x)(f(x)� E�i f)
2

+ 2�
X
y2B

�i(y)(f(y)� E�i f)
2

� 2�Var�i f;

as required.
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0 
1

1
3

1
3 (all cycle edges)p

Figure 1: \Pince-nez" graph (n = 8).

4 Examples

In the �nal section we collect together a number of illustrative examples. The

aim is more to re-derive a variety of existing results in a simple, uniform manner

than to obtain new results.

4.1 Toy example

Consider the symmetric random walk on the 2n-vertex \pince-nez" graph ob-

tained by joining two disjoint n-cycles by a single edge. Suppose transitions

within cycles occur with probability 1
3
, while the unique transition between

cycles occurs with probability p � 1
3 . Loop probabilities are de�ned by comple-

mentation. The transition probabilities are symmetric, so the random walk is

time-reversible and its stationary distribution is uniform.

Now decompose the set of vertices (states) into two disjoint subsets, 
0 and


1, with 
0 containing the n vertices in the �rst cycle, and 
1 the n vertices

in the second. The spectral gap for each cycle considered in isolation is 2
3(1 �

cos(2�=n)). (Diaconis and Salo�-Coste treat this example in [5, x4.2]. The

factor 2
3
arises because our transition probabilities are 1

3
instead of 1

2
.) Since

1 � cos x � 2x2=5, for 0 � x � �=2, we have that the spectral gap for each

restriction chain is at least 16�2=15n2 (assuming n � 4), so we may take �min =

10n�2. The projection chain in this example is the symmetric two-state chain

with transition probability p=n between states, so we take �� = 2p=n. Finally

 = p. (Recall that  is the maximum, over all states, of the probability of

exiting from the current block of the partition of the states.) Theorem 1 yields

as Poincar�e constant for the random walk on the pince-nez:

� = min

�
2p

3n
;

20

3n3 + 2n2

�

Note that � = 
(n�3) when p = 
(n�2), and � = 
(pn�1) when p = O(n�2);

in the latter case, our estimate is tight to within a constant factor, and a

factor n2 better than existing decomposition bounds which have the form � =

�(���min) = �(pn�3).

A log-Sobolev inequality may be obtained equally simply, using a similar

calculation. The restriction chains satisfy a log-Sobolev inequality with constant

16�2=75n2 [5, x4.2], so we may take �min = 2n�2. The log-Sobolev constant

13



for the two-state projection chain is �� = p=n (see [5, Thm. A.2]). Thus, by

Theorem 4,

� = min

�
p

3n
;

2

3n3 + n2

�
:

4.2 Product of two Markov chains

Consider two �nite-state, time-reversible Markov chains, (X;PX ) and (Y; PY ),

with state spaces X and Y . There are a number of ways of de�ning a product

Markov chain (
;P ) on 
 = X � Y , but one which suits our purpose is to

de�ne the transition probabilities P in terms of the transition probabilities PX
and PY as follows. For all (x; y); (x0; y0) 2 
,

P ((x; y); (x0; y0)) :=

8>>>><
>>>>:

PX(x; x
0); if x0 6= x and y0 = y;

PY (y; y
0); if x0 = x and y0 6= y;

PX(x; x) + PY (y; y)� 1; if x0 = x and y0 = y;

0; otherwise.

For the loop probabilities to be non-negative we require PX(x; x)+PY (y; y) � 1

for all (x; y) 2 
, and we assume this from now on.

Our goal is to establish a Poincar�e constant � for (
;P ) in terms of those

for (X;PX ) and (Y; PY ): let us call them �X and �Y , respectively. For conve-

nience, identify X with [n]. Then, writing 
i := fig � Y , we have the natural
decomposition 
 = X � Y =

S
i2[n]
i. (Of course, we could have reversed the

roles of X and Y , and indexed the restriction chains by Y .) Each of the restric-

tion chains is isomorphic to (Y; PY ) and so �min = �Y . The projection chain

is isomorphic to (X;PX ) and so �� = �X . By symmetry, �̂
j
i = �i whenever the

former is de�ned, and hence ̂ = 0 and we are in the situation of Corollary 3.

We obtain � = minf�X ; �Y g as the required Poincar�e constant for (
;P ), and

this is tight. Exactly the same argument applies to the log-Sobolev constant.

4.3 One-dimensional Ising model

Consider the path of length n, i.e., the graph with vertex set [n] and edges

joining vertices di�ering by 1. Con�gurations of the Ising model are just as-

signments � : [n] ! f�1;+1g of �1 \spins" to the vertices of the graph. The

Hamiltonian of the Ising system on the path is de�ned by

H(�) :=

n�2X
i=0

[1� �(i)�(i + 1)]=2;

in other words, we count 1 for every pair of adjacent unlike spins. Denote

the set of all 2n con�gurations by 
. We wish to sample con�gurations from

the Boltzmann-Gibbs distribution �(�) := exp(��H(�))=Z on 
, where Z :=P
�2
 exp(��H(�)) is the partition function of the system, and � 2 R+ is in-

verse temperature. (What has been described is the ferromagnetic Ising model,

which favours like spins; see Cipra's survey article [3] for background.)

14



One standard way to construct a Markov chain on 
 with stationary dis-

tribution � is through single-site heat-bath dynamics. For i 2 [n] and � : [n]!
f�1;+1g, let �[i +1] (respectively, �[i �1]) be the con�guration that agrees

with � at all vertices except possibly vertex i, where �[i +1](i) = +1 (respec-

tively, �[i �1](i) = �1). The transitions of our heat-bath Markov chain are

de�ned by the following trial, where � is the current state:

1. Select i 2 [n] uniformly at random (u.a.r.).

2. Let

p :=
expf��H(�[i +1])g

expf��H(�[i +1])g+ expf��H(�[i �1])g
;

Then with probability p the new state is �[i +1] and with probability 1�p
the new state is �[i �1].

For convenience, we'll imagine that there are extra vertices 0 and n with spec-

i�ed �xed spins, so that p 2 f12 ; e
��=(e� + e��)g.

Choose a vertex m 2 [n] as close to the mid-point of the path as possible

(e.g., m = bn=2c), and partition the con�gurations into two sets 
 = 
+[
�,
where 
+ (respectively, 
�) is the set of all con�gurations � with �(m) = +1

(respectively, �(m) = �1). Consider the restrictions of the Markov chain to 
+

and 
�, and the corresponding projection chain (which in this case has just

two states).

A little optimisation gives the spectral gap of the projection chain as �� �
1=(cosh �)2n. The parameter  satis�es  � 1=(1 + e�2�)n. Thus

� � min

(
1

3(cosh �)2n
;

�min

1 + 3
4
(e2� + 1)

)
:

Each restriction chain is a direct product of two independent Ising systems on

at most bn=2c vertices: independent because we �xed a spin at the middle of

the path. The spectral gap of a direct product is the minimum of the spectral

gaps of the components, as we saw in x4.2. So, denoting by �k the spectral

gap of the ferromagnetic Ising system on [k] (with updates at any given site

occurring at rate/probability 1=n), we have the following recurrence:

�k � min

(
1

3(cosh �)2n
;

�bk=2c

1 + 3
4
(e2� + 1)

)
:

This has solution �n = 
(n�c), where c = 1+ log2
�
1+ 3

4
(e2� +1)

	
. So, at any

�xed temperature, the spectral gap is bounded by an inverse polynomial in n

whose exponent c tends to 1 + log2
5
2
< 2:33 as � ! 0. In the light of (2), the

mixing time scales as nc+1.

A similar argument applies to the log-Sobolev constant. However, the

bound on ��, the log-Sobolev constant of the two-state projection chain, is

1=2(cosh �)2n (see [5, Thm. A.2]), which is worse than the bound we had

for �� by a factor of two. As a result, we obtain �n = 
(n�c
0

), where c0 =
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1 + log2f1 + 3
2
(e2� + 1)g. So, at any �xed temperature, the log-Sobolev con-

stant is bounded by an inverse polynomial in n whose exponent c0 tends to

1 + log2 4 = 3 as � ! 0. Although c0 > c, we should recall that, by (24),

the mixing time scales as nc
0

logn, which is an improvement on nc+1 for small

enough �. In a sense, these are both poor results, since the 1-dimensional

Ising model does not exhibit a phase transition, and we should expect mixing

time O(n logn) at any temperature (though with a constant of proportionality

depending on �). Note, however, that if we had used existing decomposition

theorems we would have lost a factor n at each level of recursion leading to a

bound on spectral gap diminishing with n faster than any inverse polynomial.

When the temperature is suÆciently high (i.e., � is suÆciently close to 0),

we get a better bound by switching to Corollaries 2 or 5. Indeed, since ̂ ! 0

as � ! 0, the bounds both on spectral gap and log-Sobolev constant are of the

form 
(1=n1+Æ) with Æ tending to 0 as n!1.

4.4 Ising and other spin models on trees

The calculation of x4.3 carries over, with very little change to balanced trees of

bounded degree. Thus we can treat balls of given radius in the so-called Bethe

lattice of coordination number r; loosely, the in�nite regular tree of degree r.

Again, for �xed r and �, the Poincar�e and log-Sobolev constants will be inverse

polynomial. This was already known (see Kenyon, Mossel and Peres for inverse

polynomial bounds on spectral gap [10]), though the fact that spin systems in

general and the Ising model in particular have polynomial mixing time on trees

is not so obvious.

4.5 Walks on the Boolean cube and balanced matroids

Consider the random walk on the n-dimensional Boolean cube in which transi-

tions (including loops) all occur with probability 1=(n+ 1). There is a natural

decomposition of the n-dimensional cube into two (n � 1)-dimensional cubes

connected by a perfect matching. Clearly ̂ = 0 and we are in the situation of

Corollary 3. Then �� = 2=(n + 1) and, by induction, � = 2=(n + 1). Likewise,

�� = 1=(n + 1) ([5, Thm. A.2] again), and hence � = 1=(n + 1). These results

are of course well known; see, for example, [5, x4.1].
More interestingly, there is a non-trivial Markov chain | the so-called

\bases-exchange walk" on a balanced matroid | which retains just enough

of the properties of the cube as to be treatable by essentially the same ap-

proach. We'll be very brief in describing the setting; refer to [7] and [9] for a

more expansive treatment. Let E be a �nite ground set and B � 2E a non-

empty collection of subsets of E. We say that B forms the collection of bases

of a matroid M = (E;B) if the following \exchange axiom" holds: for every

pair of bases X;Y 2 B and every element e 2 Y n X, there exists a element

f 2 X n Y such that X [ feg n ffg 2 B. It is easy to show that every basis

must have the same size, which is called the rank of M . Denote by m = jEj
the size of the ground set and by r the rank. An concrete example of a matroid

is provided by the set of spanning trees of a �nite undirected graph G. Here
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we interpret E as the set of edges of G, and B as the set of all spanning trees.

The rank is of course r = n � 1, where n is the number of vertices of G. The

exchange axiom is easily checked.

Two absolutely central operations on matroids are contraction and deletion.

If e 2 E is an element of the ground set of M then the matroid M n e obtained
by deleting e has ground set E n feg and bases B(M n e) = fX � E n feg : X 2
B(M)g; the matroid M=e obtained by contracting e has the same ground set

as M n e but bases B(M=e) = fX � E n feg : X [ feg 2 B(M)g.
The exchange axiom suggests a very natural Markov chain on the set of

bases B. Suppose the state (basis) at time t is Xt 2 B. Then the state at

time t+ 1 is obtained as the result of the following trial:

Step 1 Choose e 2 E and f 2 Xt independently and uniformly at random.

Step 2 If Xt [ feg n ffg 2 B then Xt+1  Xt [ feg n ffg else Xt+1  Xt.

It is straightforward to check, using exchange axiom, that this Markov chain

(Xt) is irreducible; furthermore, it is clearly time-reversible and has uniform

stationary distribution. It has been conjectured that (Xt) is rapidly mixing2

for all matroids M . Although there is little evidence in favour of the conjec-

ture, there is at least an interesting class of matroids, namely the \balanced"

matroids, for which rapid mixing was established by Feder and Mihail [7]. The

class of balanced matroids includes all regular matroids, and hence graphic ma-

troids (i.e., ones whose set of bases may be realised as the set of all spanning

trees of a graph).

Fix any e 2 E. Since there is a natural isomorphism between M and the

disjoint union ofM ne andM=e, the bases-exchange walk is a natural candidate

for the decomposition method. Let 
0 (respectively, 
1) be the set of bases not

containing e (respectively, containing e). Note that 
0 is isomorphic to M n e
and 
1 to M=e, enabling us to argue inductively about the two restriction

chains.

Rather than de�ne the notion of \balanced matroid" explicitly here, let us

just note two of the consequences of balance:

1. Contractions and deletions of a balanced matroid are themselves balanced,

in particular M n e and M=e are balanced matroids.

2. The transitions of the bases-exchange walk that cross from M n e to M=e

and vice versa support a fractional matching. That is, there is a function

w : 
0 �
1 ! R satisfying:

� w(x; y) � 0, for all x; y;

� w(x; y) > 0 entails P (x; y) > 0;

�
P

y w(x; y) = �(
1) for all x, and
P

xw(x; y) = �(
0) for all y.

2
I.e., achieves total variation distance " > 0 from the stationary distribution in a number

of steps polynomial in m, r and log "�1.
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De�ne a new Markov chain on 
, with transition probabilities bP , as follows.
Transition probabilities within 
0 and 
1 are unchanged, so that the restric-

tion chains are also unchanged. Transitions from x 2 
0 to y 2 
1 and vice

versa occur with probability bP (x; y) = bP (y; x) := w(x; y)=rm. Note that non-

zero transition probabilities in the bases-exchange walk are all 1=rm, and that

the new Markov chain does not add any transitions to those already available.

From these observations it follows immediately that for any pair of distinct

states x; y it is the case that bP (x; y) � P (x; y). Thus, it is enough to bound

the Poincar�e constant � for the Markov chain with modi�ed transition proba-

bilities bP . (This is a trivial application of the comparison method of Diaconis

and Salo�-Coste [6].)

The key point about bP is that it uses the fractional matching to spread the

transitions between 
0 and 
1 evenly. It is easily checked that ̂ = 0 and that

we are in the situation of Corollary 3. The projection chain (derived from bP
by projection onto f
0; 
1g) has two states f0; 1g with ��(0) = �(
0) and

��(1) = �(
1). Its transition probabilites are P (0; 1) = ��(1)=rm and P (1; 0) =

��(0)=rm. A brief calculation establishes �� = 1=rm. (This is directly from the

de�nition (1) using f(0) = ��(1) and f(1) = ���(0), a choice that is unique up

to scaling among functions with expectation 0.) By induction, since M n e and
M=e are also balanced, � = 1=rm.

Almost the same argument applies to the log-Sobolev constant �. However,

there is a small technicality, arising from the asymmetry of the projection chain.

Speci�cally, we know only the two sides are balanced to the extent that

1

m
� j
1j
j
0j

� r:

Unfortunately, while the spectral gap is constant for the asymmetric two-state

Markov chain, this is no longer the case for the log-Sobolev constant. More

precisely, using [5, Thm. A.2], we have that

�� = 


 
1

rm ln
�
�(
0)�1 + �(
1)�1

�
!
;

worsening the bound by a factor ln(1=(r +m)).

We can recover from this setback by noting that w(x; y) � min
�
�(
0);

�(
1)
	
, for all x; y, so that we could have de�ned bP by:

bP (x; y) = bP (y; x) = w(x; y)

rmminf�(
0); �(
1)g
:

This de�nition boosts the transition probabilities between 
0 and 
1 when

either �(
0) or �(
1) is small, while leaving all transition probabilities bounded

by 1=rm, as required. This modi�cation to bP more than compensates for the

e�ect just identi�ed, and indeed the worst case (calculus) is when �(
0) =

�(
1) =
1
2
. The bottom line is that we achieve � = 1=2rm.

These bounds were recently obtained by Jerrum and Son [9] using a longer

and more complicated argument, tailored to the speci�c application.
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4.6 Hard-core model on trees

We conclude with an example where o�-the-shelf decomposition results do not

suÆce. In this case, a reasonable bound on spectral gap may be deduced from

Theorem 1. However, the problem that threatened to arise at the end of the

previous example | namely that the log-Sobolev constant of a highly asymmet-

ric two-state Markov chain may be arbitrarily close to 0 | causes real problems

here. Nevertheless, by tailoring our decomposition to the problem at hand we

will obtain a reasonable bound on the log-Sobolev constant.3

Let Td denote the tree, rooted at v, of depth d and branching factor �.4

Consider the hard-core lattice gas model de�ned on the set 
 of independent

sets of Td. For a given fugacity � > 0,5 we are interested in the Boltzmann-

Gibbs distribution � de�ned on 
, where

�(�) / �j�j;

and j�j denotes the cardinality of the independent set �.

Once again, a simple Markov chain with state space 
 and stationary distri-

bution � is the following single-site heat-bath dynamics, known as the Glauber

dynamics. For technical reasons we de�ne the chain with respect to a parameter

N � n, where n denotes the number of vertices in Td.

From Xt 2 
,

� Choose a vertex z uniformly at random.

� Set

X 0 =

(
Xt n fzg; with probability 1=(1 + �);

Xt [ fzg; with probability �=(1 + �):

� If X 0 2 
, set Xt+1 = X 0 with probability n=N , otherwise set Xt+1 = Xt.

In practice, we set N equal to the number n of vertices in the tree at the top

level of the inductive argument; the extra parameter will eliminate rescalings

in the upcoming analysis.

We decompose the state space as 
 = 
1 [
2 [
3 where:


1 := f� 2 
 : v 2 �g;

2 := f� 2 
 n 
1 : � [ fvg 2 
g;

3 := 
 n
1 n 
2;

also let 
4 := 
2 [
3.

3
Just before the �nal version of this article was prepared, Martinelli, Sinclair and Weitz [16]

announced substantially better bounds than the ones obtained here. They are able to show

optimal, i.e., O(n log n), mixing over a range of fugacities.
4Thus, the degree of any vertex that is not the root or a leaf is �+ 1. The degree of the

root v itself is �.
5
Note that in this section only � will not refer to spectral gap.
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Without loss of generality, assume E� f
2 = 1. Using (25) twice:

L�(f) =
3X
i=1

��(i)L�i(f) +
3X
i=1

��(i)(E�i f
2) ln(E�i f

2)

� ��(1)L�1(f) + ��(4)L�4(f) +
3X
i=1

��(i)(E�i f
2) ln(E�i f

2): (39)

Observe that the restriction chain on 
1 with transition probabilities P1 (where

N is constant so that the transition probabilities are identical in P1 and P ) is

simply the product chain of �2 copies of the chain on Td�2. Similarly, the

restriction chain on 
4 is the product of � copies of the chain on Td�1. The

projection chain also has a simple structure. In particular, there is a bijection

� : 
1 ! 
2 such that for y = �(x) we have P (x; y) = 1=(1 + �)N and

P (y; x) = �=(1 + �)N . This perfect matching � captures the only transitions

between the sets 
1 and 
4.

De�ne a new chain on state space f1; 2; 3g with stationary distribution ��

(i.e., the same as that of the projection chain on f
1; 
2; 
3g) with transition

probabilities bP given by:

bP (1; 2) = �=(1 + �)bP (2; 1) = 1=(1 + �)bP (2; 3) = minf1; ��(3)=��(2)gbP (3; 2) = minf1; ��(2)=��(3)gbP (1; 3) = bP (3; 1) = 0:

(The �ctional Markov chain bP is a formal device: we shall establish and apply a

log-Sobolev inequality for bP , and then relate the various resulting terms to the

actual chain P .) Let b� denote the log-Sobolev constant of this chain. From (39)

and the log-Sobolev inequality for bP we now have:

L�(f) �
��(1)

�d�2
E�1(f; f) +

��(4)

�d�1
E�4(f; f)

+
1b�
X
i=1;2

��(i) bP (i; i + 1)
�q

E�i f
2 �

q
E�i+1 f

2
�2
: (40)

We need to bound the last terms in the right-hand side. Beginning with

i = 1, observe that bP (1; 2) = N P (1; 2); Moreover, the bijection � implies the

corresponding � = 0, and the following holds:

��(1) bP (1; 2)�pE�1 f
2 �

p
E�2 f

2
�2
� N C12:

For i = 2 our bound proceeds as follows, starting with an inequality akin to (31):

��(2) bP (2; 3)�pE�2 f
2 �

p
E�3 f

2
�2

� ��(2) bP (2; 3) X
x2
2 ;y2
3

�2(x)�3(y)(f(x) � f(y))2
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� minf��(2); ��(3)gVar�4(f)

� minf��(2); ��(3)g
�d�1

E�4(f; f)

Substituting these estimates into (40) we obtain

L�(f) �
��(1)

�d�2
E�1(f; f) +

��(4)

�d�1

�
1 +

minf��(2); ��(3)g
��(4) b�

�
E�4(f; f) +

N C12b�
� max

�
1

�d�2
;

�
1 +

minf��(2); ��(3)g
��(4) b�

�
1

�d�1
;
Nb�
�
E�(f; f);

leading to the recurrence

�d � min

(
�d�2;

�
1 +

minf��(2); ��(3)g
��(4) b�

��1
�d�1;

b�
N

)
: (41)

To bound b�, we use the following result of Diaconis and Salo�-Coste [5,

Thm A.1] on the log-Sobolev constant of the chain on K3 (the complete graph

on three vertices) with transition probabilities P (i; j) = ��(j) for all 1 � i; j � 3,

�K3
� 1� 2��min

ln(1=��min � 1)
� 1

3 ln(1=��min)
; (42)

where ��min = minf��(1); ��(2); ��(3)g. Comparing our three-state chain (with

transition probabilities bP ) with K3 we obtain the following claim.

Claim 7. b� � �K3
=2(1 + �):

Proof. For succinctness, write �f(i) :=
p
E�i f

2. Suppose 0 < � < 1. Then

�
�f(1)� �f(3)

�2 � �� �f(1)� �f(2)
�
+
�
�f(2) � �f(3)

��2
=

�p
�

1p
�

�
�f(1)� �f(2)

�
+
p
1� � 1p

1� �
�
�f(2) � �f(3)

��2

� 1

�

�
�f(1) � �f(2)

�2
+

1

1� �
�
�f(2)� �f(3)

�2
;

where the inequality is Cauchy-Schwarz. Now set

� =
(��(1) + ��(2))��(3)

��(1)��(2) + 2��(1)��(3) + ��(2)��(3)
;

then

��(1)��(3)
�
�f(1) � �f(3)

�2 � ���(1) + 2��(1)��(3)

��(2)
+ ��(3)

�

�
�

��(1)��(2)

��(1) + ��(2)

�
�f(1) � �f(2)

�2
+

��(2)��(3)

��(2) + ��(3)

�
�f(2)� �f(3)

�2�
:
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Starting with the log-Sobolev inequality for the Diaconis/Salo�-Coste chain

on K3 and applying the above inequality, we obtain

�K3
L��( �f) � ��(1)��(2)

�
�f(1)� �f(2)

�2
+ ��(1)��(3)

�
�f(1) � �f(3)

�2
+ ��(2)��(3)

�
�f(2)� �f(3)

�2
� 2

�
1 +

��(1)��(3)

��(2)

��
��(1)��(2)

��(1) + ��(2)

�
�f(1)� �f(2)

�2
+

��(2)��(3)

��(2) + ��(3)

�
�f(2) � �f(3)

�2�

� 2

�
1 +

��(1)��(3)

��(2)

�
E ��( �f; �f);

where E ��( �f; �f) is the Dirichlet form associated with the bP chain. Hence

b� � �K3

2
�
1 + ��(1)��(3)=��(2)

� � �K3

2(1 + �)
;

as claimed, where the second inequality uses the fact that ��(1) = � ��(2).

Combined with our earlier estimate (42) for �K3
, Claim 7 gives

b� � 1

6(1 + �) ln(1=��min)
:

By considering appropriate mappings 
 ! 
i, we see that

��(1) � �

(1 + �)�+1
; ��(2) � 1

(1 + �)�+1
; and ��(3) � �

(1 + �)�+2
:

(E.g., for the �rst of these, one considers the mapping that forces � 7! �[fvgn
�(v), where �(v) denotes the set of neighbours of v.) Thus

1

��min
� (1 + �)�+2

minf1; �g :

In the other direction, similar arguments yield

��(2) � 1

�
; ��(3) � (1 + �)� � 1 and ��(4) � 1

1 + �
;

so that

minf��(2); ��(3)g � min
n1
�
; (1 + �)� � 1; 1

o
:

Combining these various inequalities,

minf��(2); ��(3)g
��(4) b� � 6minf��(2); ��(3)g (1 + �) ln(1=��min)

��(4)

� g�(�);

where

g�(�) = 6min
n 1
�
; (1 + �)� � 1; 1

o
(1 + �)2 ln

�
(1 + �)�+2

minf1; �g

�
: (43)
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Returning to recurrence (41),

1=�d � max
�
(1 + g�(�))=�d�1; N=b�	;

leading to

��1 � n(1 + g�(�))
log� n

= n1+log�(1+g�(�)):

To make sense of this bound on the log-Sobolev constant �, observe that

g�(�) = O
�
��(1 + j log �j)

�
;

this estimate may be obtained from (43) by considering separately the ranges

� < ��1, ��1 � � < 1, and � � 1. In particular we see that g�(�) ! 0 as

�! 0 for any �xed �. In rough terms, the mixing time tends to linear as the

fugacity � tends to 0.
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