
How Long Does it Take to Catch a Wild Kangaroo?

Ravi Montenegro ∗ Prasad Tetali †

ABSTRACT
The discrete logarithm problem asks to solve for the expo-
nent x, given the generator g of a cyclic group G and an
element h ∈ G such that gx = h. We give the first rigorous
proof that Pollard’s Kangaroo method finds the discrete log-
arithm in expected time (3+o(1))

√
b− a for the worst value

of x ∈ [a, b], and (2 + o(1))
√
b− a when x ∈uar [a, b]. This

matches the conjectured time complexity and, rare among
the analysis of algorithms based on Markov chains, even the
lead constants 2 and 3 are correct.

ACM Classifiers: F.2.1, G.3
General Terms: Algorithms, Theory.
Keywords: Pollard’s Kangaroo method, digital signature,
discrete logarithm, Markov chain, mixing time.

1. INTRODUCTION
Cryptographic schemes are generally constructed in such

a way that breaking them will likely require solving some
presumably difficult computational problem, such as finding
prime factors of a large integer or solving a discrete loga-
rithm problem. Recall that the discrete logarithm problem
asks to solve for the exponent x, given the generator g of a
cyclic group G and an element h ∈ G such that gx = h. The
Diffie-Hellman key exchange, ElGamal cryptosystem, and
the US government’s DSA (Digital Signature Algorithm) are
all based on an assumption that discrete logarithm is difficult
to find. Algorithms motivated by probabilistic intuition are
often used to solve these problems and yet, although heuris-
tics can be given for the time complexity of these methods,
rigorous results are rare.

∗Department of Mathematical Sciences, University of Mas-
sachusetts at Lowell, Lowell, MA 01854, USA. Email:
ravi montenegro@uml.edu
†School of Mathematics and School of Computer Science,
Georgia Institute of Technology, Atlanta, GA 30332, USA.
Email: tetali@math.gatech.edu; research supported in part
by NSF grants DMS 0401239, 0701043.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’09, May 31–June 2, 2009, Bethesda, Maryland, USA.
Copyright 2009 ACM 978-1-60558-506-2/09/05 ...$5.00.

In [2, 4] one such method is considered, namely Pollard’s
Rho Algorithm to find the discrete logarithm on a cyclic
group G, verifying the correctness of commonly held intu-
ition. This work generated further interest in the cryptog-
raphy community, and Dan Boneh in particular encouraged
us to analyze Pollard’s Kangaroo method [6], due to its very
many applications. While the Rho Algorithm is motivated
by the Birthday Problem, the Kangaroo method works on
the same principle as the Kruskal Count [7]. When the dis-
crete logarithm x is known to lie in a small interval [a, b]
with b − a � |G|, this algorithm is expected to improve
on the Rho algorithm, with a run time averaging 2

√
b− a

steps, versus
p

(π/2)|G| for the Rho algorithm. In fact, the
Kangaroo method is often the most efficient means for find-
ing discrete logarithm on an arbitrary cyclic group, as the
Rho algorithm requires |G| be known exactly and Shanks
baby-step giant-step method requires too much memory.

Among the cases in which this would be useful, Boneh and
Boyen [1] give a signature scheme in which a shorter signa-
ture can be transmitted if the recipient uses the Kangaroo
method to determine certain omitted information. Verifi-
cation of the time complexity of the Kangaroo method (as
we do here) would then make rigorous their claim that the
missing bits can be efficiently constructed. While the above
is an application for signature communication, another nat-
ural application is in forging a signature. For instance, in
order to speed up computation of a signature the secret key
x may be chosen from an interval [a, b] with b− a� |G|, or
an attack might reveal a sequence of consecutive bits at the
beginning or end of the key, in which cases the Kangaroo
method can be used to find the key and forge a signature.

The Kangaroo method is based on running two indepen-
dent sequences of hops (random walks), one starting at a
known state (the “tame kangaroo”) and the other starting
at the unknown value of the discrete logarithm x (the “wild
kangaroo”). The main result of this paper will be a bound
on the expected number of steps required until these random
walks intersect and the logarithm is determined.

Theorem 1.1. Suppose g, h ∈ G are such that h = gx for
some x ∈ [a, b]. The expected number of group operations
required by the Distinguished Points implementation of the
Kangaroo method is

(3 + o(1))
√
b− a

when x = a or x = b, and is otherwise upper bounded by this.
If x is a uniform random value in [a, b], i.e. x ∈uar [a, b],
then the expected number of group operations is

(2 + o(1))
√
b− a .

We show matching upper and lower bounds, so the lead
constants are sharp, which is quite rare among the analyses
of algorithms based on Markov chains. Previously the first
bound was known only by a rough heuristic, while Pollard
[7] gives a convincing but not completely rigorous argument
for the second. Given the practical significance of Pollard’s
Kangaroo method for solving the discrete logarithm prob-
lem, we find it surprising that there has been no fully rigor-
ous analysis of this algorithm, particularly since it has been
30 years since it was first proposed in [6].

Past work on problems related to the Kruskal Count seem
to be of little help here. Pollard’s argument of [7] gives rig-
orous results for specific values of

√
b− a, but the recur-

rence relations he uses can only be solved on a case-by-case
basis by numerical computation. Lagarias et.al. [3] used
probabilistic methods to study the distance traveled before
two walks intersect, but only for walks in which the num-
ber of steps until an intersection was simple to bound. Al-
though our approach here borrows a few concepts from the
study of the Rho algorithm in [2], such as the use of a sec-
ond moment method to study the number of intersections,
a significant complication in studying this algorithm is that,
when b− a� |G|, the kangaroos will have proceeded only a
small way around the cyclic group before the algorithm ter-
minates. As such, mixing time is no longer a useful notion,
and instead a notion of convergence is required which occurs
long before the mixing time. We expect that the tools de-
veloped in this paper to avoid this problem will prove useful
in examining other such randomized algorithms.

Our analysis assumes that the Kangaroo method involves
a truly random hash function: if g ∈ G then F (g) is equally
likely to be any of the jump sizes, independent of all other
F (g′). In practice different hash functions will be used on
different groups – whether over a subgroup of integers mod p,
elliptic curve groups, etc – but in general the hash is chosen
to “look random.” Since the Kangaroo method applies on
all cyclic groups then a constructive proof would involve the
impossible task of explicitly constructing a hash on every
cyclic group, and so the assumption of a truly random hash
is made in all attempts at analyzing it of which we are aware
[8, 5, 7].

The paper proceeds as follows. In Section 2 we intro-
duce the Kangaroo method. A general framework for an-
alyzing intersection of independent walks on the integers is
constructed in Section 3. This is followed by a detailed anal-
ysis for the Kangaroo method in Section 4.

2. PRELIMINARIES
We describe here the Kangaroo method, originally known

as the Lambda method for catching Kangaroos. The Dis-
tinguished Points implementation of [5] is given because it
is more efficient than the original implementation of [6].

Problem: Given g, h ∈ G, solve for x ∈ [a, b] with h = gx.

Method: Pollard’s Kangaroo method (distinguished points
version).

Preliminary Steps:

• Define a set D ⊂ G of “distinguished points”, with
|D|
|G| = c√

b−a for some constant c.

• Define a set of jump sizes S = {s0, s1, . . . , sd}. We con-
sider powers of two, S = {2k}dk=0, with d ≈ log2

√
b− a+

log2 log2

√
b− a − 2, chosen so that elements of S av-

erage to a jump size of
√
b−a
2

.

• Finally, a hash function F : G→ S.

The Algorithm:

• Let Y0 = a+b
2

, X0 = x, and d0 = 0. Observe that

gX0 = hgd0 .

• Recursively define Yj+1 = Yj + F (gYj) and likewise
di+1 = di + F (hgdi). This implicitly defines Xi+1 =
Xi + F (gXi) = x+ di+1.

• If gYj ∈ D then store the pair (gYj , Yj − Y0) with an
identifier T (for tame). Likewise if gXi = hgdi ∈ D
then store (gXi , di) with an identifier W (for wild).

• Once some distinguished point has been stored with
both identifiers T andW , say gXi = gYj where (gXi , dj)
and (gYj , Yj − Y0) were stored, then

Yj ≡ Xi ≡ x+ di mod |G|
=⇒ x ≡ Yj − di mod |G|

The Yj walk is called the “tame kangaroo” because its
position is known, whereas the position Xi of the “wild kan-
garoo” is to be determined by the algorithm. This was orig-
inally known as the Lambda method because the two walks
are initially different, but once gYj = gXi then they proceed
along the same route, forming a λ shape.

Theorem 1.1 makes rigorous the following commonly used
rough heuristic: Suppose Y0 ≥ X0. Run the tame kanga-
roo infinitely far. Since the kangaroos have an average step

size
√
b−a
2

, one expects the wild kangaroo requires Y0−X0√
b−a/2

steps to reach Y0. Subsequently, at each step the probability
that the wild kangaroo lands on a spot visited by the tame
kangaroo is roughly p = 1√

b−a/2 , so the expected number

of additional steps by the wild kangaroo until a collision is

then around p−1 =
√
b−a
2

. By symmetry the tame kangaroo

also averaged p−1 steps. About
√
b−a
c

additional steps are
required until a distinguished point is reached. Since Xi and
Yj are incremented simultaneously the total number of steps
taken is then

2

„
|Y0 −X0|√
b− a/2

+ p−1 +

√
b− a
c

«
≤ (3 + 2c−1)

√
b− a

If X0 = x ∈uar [a, b] then E |Y0−X0|√
b−a/2 =

√
b−a
2

and the bound

is (2 + 2c−1)
√
b− a.

Recall we assume a random hash function F : if g ∈ G then
F (g) is equally likely to be any value in S, independent of all
other F (g′). A second assumption is that the distinguished

points are well distributed with c
(b−a)→∞−−−−−−→ ∞; either they

are chosen uniformly at random, or if c = Ω(d2 log d) then
roughly constant spacing between points will suffice. The
assumption on distinguished points can be dropped if one
instead analyzes Pollard’s (slower) original algorithm, to
which our methods also apply.

3. UNIFORM INTERSECTION TIME
AND A COLLISION BOUND

In order to understand our approach to bounding time
until the kangaroos have visited a common location, which
we call a collision, it will be helpful to consider a simpli-
fied version of the Kangaroo method. First, observe that
because hash values F (g) are independent then Xi and Yj
are independent random walks at least until they collide,
and so to bound time until this occurs it suffices to assume
they are independent random walks even after they have col-
lided. Second, these are random walks on Z/|G|Z, so if we
drop the modular arithmetic and work on Z then the time
until a collision can only be made worse. Third, since the
walks proceed strictly in the positive direction on Z then
in order to determine the number of hops the “wild kanga-
roo” (described by Xi) takes until it is caught by the “tame
kangaroo” (i.e. Xi = Yj on Z), it suffices to run the tame
kangaroo infinitely long and only after this have the wild
kangaroo start hopping.

With these simplifications the problem reduces to one
about intersection of walks Xi and Yj , both proceeding in
the positive direction on the integers, in which Yj proceeds
an infinite number of steps and then Xi proceeds until some
Xi = Yj . Thus, rather than considering a specific proba-
bility Pr (Xi = Yj) it is better to look at Pr (∃j : Xi = Yj).
By symmetry, the same approach will also bound the ex-
pected number of hops the tame kangaroo requires to reach
the location where it can trap the wild kangaroo.

First however, because the walk does not proceed long
enough to approach its stationary distribution (obvious on
Z and also true on Z/|G|Z when b − a � |G|), alternate
notions resembling mixing time and a stationary distribution
will be required. Recall the heuristic that at each step the
probability of a collision is roughly the inverse of the average
step size. Our mixing time quantity will measure the number
of steps required for this to become a rigorous statement:

Definition 3.1. Consider a Markov chain P on Z which
is increasing (i.e. P(u, v) > 0 only when v > u) and tran-
sitive (i.e. ∀u, v ∈ Z : P(u, v) = P(0, v − u)). Define the
uniform intersection probability U by

U =
1P∞

k=1 kP(0, k)
.

Let Xi and Yj denote independent walks starting from states
(X0, Y0) ∈ Ω, where

Ω = {(x, y) ∈ Z× Z : |x− y| < max{k : P(0, k) > 0}} .

If ε ∈ [0, 1] the uniform intersection time T (ε) ∈ N is

T (ε) = min

(
T

˛̨̨̨ ∀i ≥ T, ∀(X0, Y0) ∈ Ω,
)
.

˛̨̨̨
Pr(∃j:Xi=Yj)

U
− 1

˛̨̨̨
≤ ε

If gcd{k : P(0, k) > 0} = 1 then the uniform intersection
time is finite. To avoid clutter we write T to denote T (ε) in
the remainder.

More generally, our results will apply if P is an increasing
Markov chain on a poset S, i.e. P(u, v) > 0 only if u ≺ v,
and Ω is a binary relation on S which is reflexive, symmetric,
and such that if (X0, Y0) ∈ Ω then

∀Xi∃Yj : (Xi, Yj) ∈ Ω ∧ (Yj 6≺ Xi) .

A uniform intersection probability would be any value U
satisfying the definition for the uniform intersection time.

A natural approach to studying collisions is to consider an
appropriate random variable counting the number of inter-
sections of the two walks. Towards this, let SN denote the
number of times the Xi walk intersects the Yj walk in the
first N steps, i.e.

SN =

NX
i=1

1{∃j:Xi=Yj} .

The second moment method used will involve showing that
Pr (SN > 0) is non-trivial for some N .

Our collision bound will involve the quantity BT , the ex-
pected number of collisions in the first T steps between two
independent walks started at nearby states. To be precise,
define:

BT = max
(X0,Y0)∈Ω

TX
i=1

Pr (∃j : Xi = Yj) .

Then the expected number of steps until a collision can
be bounded as follows.

Theorem 3.2. Given an increasing Markov chain P on
Z, if two independent walks have starting states (X0, Y0) ∈ Ω
then

1− 2
√
BT

U(1 + ε)
− T ≤ E min{i > 0 : ∃j, Xi = Yj}

≤ (1− 4ε)−1

√
T +

r
1 + 2BT

U

!2

If BT , ε ≈ 0 and U−1 � T then these bounds show that

E min{i > 0 : ∃j, Xi = Yj} ∼
1

U
,

which makes rigorous the heuristic that the expected number
of steps needed until a collision is the average step size.

It will prove easiest to study SN by first considering the
first and second moments of the number of intersections in
steps T + 1 to N , i.e.

RN =

NX
i=T+1

1{∃j:Xi=Yj} ,

in terms of the uniform intersection time and probability:

Lemma 3.3. Under the conditions of Theorem 3.2, if N ≥
T = T (ε) then

(1− ε)(N − T)U ≤ E[RN] ≤ (1 + ε)(N − T)U

E[R2
N]1/2 ≤ (1 + ε)(N − T)U

»
1 +

1 + 2BT
(N − T)U

–1/2

Proof. The expectation E[RN] satisfies

E[RN] = E

NX
i=T+1

1{∃j:Xi=Yj}

=

NX
i=T+1

E[1{∃j:Xi=Yj}]

≥ (N − T)U(1− ε) (1)

The inequality follows from the relation E[1{∃j:Xi=Yj}] =
Pr (∃j : Xi = Yj). The upper bound on E[RN] follows by
taking (1 + ε) in place of (1− ε).

Now for E[R2
N]. Note that

E[R2
N] = E

"
NX

i=T+1

NX
k=T+1

1{∃j:Xi=Yj}1{∃`:Xk=Y`}

#

=

NX
i=T+1

NX
k=T+1

Pr (∃j, ` : Xi = Yj , Xk = Y`) .

By symmetry it suffices to consider the case that k ≥ i >
T . Then if Xi = Yj then because the X and Y walks are
increasing then Xk = Y` is possible only if ` ≥ j.

When k > i+T then Pr (∃` : Xk = Y` | Xi = Yj) ≤ U(1+
ε) by definition of T , and so

Pr (∃j, ` : Xi = Yj , Xk = Y`)

= Pr (∃j : Xi = Yj) Pr (∃` : Xk = Y` | Xi = Yj)

≤ (1 + ε)2U2 .

When k ≤ i+ T then

i+TX
k=i+1

Pr (∃j, ` : Xi = Yj , Xk = Y`)

≤ Pr (∃j : Xi = Yj)

×max
u

TX
k=1

Pr (∃` : Xk = Y` | X0 = Y0 = u)

≤ BT U(1 + ε) ,

since i ≥ T . It follows that

E[R2
N]

=

NX
i=T+1

„
Pr (∃j : Xi = Yj)

+2

i+TX
k=i+1

Pr (∃j, ` : Xi = Yj , Xk = Y`)

«

+2

NX
i=T+1

NX
k=i+T+1

Pr (∃j, ` : Xi = Yj , Xk = Y`)

≤ (N − T)U(1 + ε)(1 + 2BT)

+2
(N − 2T)(N − 2T + 1)

2
U2(1 + ε)2

≤ (1 + ε)2U2(N − T)2

»
1 +

1 + 2BT
(1 + ε)U(N − T)

–
.

This shows that if the number of steps N is much bigger
than U−1 then the standard deviation will be small relative
to expectation. Thus RN is concentrated around its mean.
In particular we have

Lemma 3.4. Under the conditions of Theorem 3.2, if N ≥
T then

Pr (SN > 0) ≤ BT + (N − T)U(1 + ε)

Pr (SN > 0) ≥ (1− 4ε)

»
1 +

1 + 2BT
(N − T)U

–−1

.

Proof. Observe that Pr (SN > 0) ≥ Pr (RN > 0), so for
the lower bound it suffices to consider RN . Recall the stan-
dard second moment bound: using Cauchy-Schwartz, we
have that

E[RN] = E[RN1{RN>0}] ≤ E[R2
N]1/2E[1{RN>0}]

1/2

and hence Pr (RN > 0) ≥ E[RN]2/E[R2
N] . By Lemma 3.3

then, independent of starting point,

Pr (RN > 0) ≥
„

1− ε
1 + ε

«2 »
1 +

1 + 2BT
(N − T)U

–−1

≥ (1− 4ε)

»
1 +

1 + 2BT
(N − T)U

–−1

,

since
“

1−ε
1+ε

”2

≥ 1− 4ε, for ε ≥ 0.

Now to upper bound Pr (SN > 0). Since SN ∈ N then

Pr (SN > 0) = E[1{SN>0}] ≤ E[SN] .

The expectation E[SN] satisfies

E[SN] = E

NX
i=1

1{∃j:Xi=Yj} =

NX
i=1

E[1{∃j:Xi=Yj}]

=

TX
i=1

Pr (∃j : Xi = Yj) +

NX
i=T+1

Pr (∃j : Xi = Yj)

≤ BT + (N − T)U(1 + ε) .

Proof of Theorem 3.2. To start with, upper and lower
bounds on Pr (SkN = 0) will be shown in terms of k ≥ 1.

For ` ≥ 1, let

S
(`)
N =

NX
i=1

1{∃j:X(`−1)N+i=Yj} ,

so that S
(1)
N = SN . By taking X0 ← X(`−1)N and Y0 ← Yj

where j is the smallest index such that (X(`−1)N , Yj) ∈ Ω
and Yj ≥ X(`−1)N , then by Lemma 3.4 we may bound:

BT + (N − T)U(1 + ε)

≥ 1− Pr
“
S

(`)
N = 0 | S(`−1)N = 0

”
≥ (1− 4ε)

»
1 +

1 + 2BT
(N − T)U

–−1

.

But

Pr (SkN = 0) =

kY
`=1

Pr
“
S

(`)
N = 0 | S(`−1)N = 0

”
and so

1− (1− 4ε)

»
1 +

1 + 2BT
(N − T)U

–−1
!k

≥ Pr (SkN = 0)

≥ (1−BT − (N − T)U(1 + ε))k .

These upper and lower bounds will now be used to bound
the collision time.

First, the upper bound.

Emin{i : Si > 0}

= E

∞X
i=0

1{Si=0} = 1 +

∞X
i=0

Pr (Si = 0)

≤
∞X
k=0

Pr (SkN = 0)N

≤ N

∞X
k=0

1− (1− 4ε)

»
1 +

1 + 2BT
(N − T)U

–−1
!k

= (1− 4ε)−1N

„
1 +

1 + 2BT
(N − T)U

«
.

This is minimized when N = T +
q

(1+2BT)T
U

, which gives

the upper bound of the theorem.
To show the lower bound, take

Emin{i : Si > 0}

=

∞X
i=0

Pr (Si = 0) ≥
∞X
k=1

Pr (SkN = 0)N

≥ N

∞X
k=1

(1−BT − (N − T)U(1 + ε))k

= N

„
1

BT + (N − T)U(1 + ε)
− 1

«
.

If BT ≥ 1 then the bound stated in the theorem is trivial,
so assume BT < 1.

If BT (1 − BT) < TU(1 + ε) then the maximum of the
above bound is at N = T . In this case the bound is

Emin{i : Si > 0} ≥ N

„
1

BT
− 1

«
≥ 1−BT

U(1 + ε)
− T .

When BT (1− BT) ≥ TU(1 + ε) then the maximum is at

N = γ(1−γ)
U(1+ε)

, where γ =
p
BT − TU(1 + ε). In this case the

bound is

Emin{i : Si > 0} ≥

“
1−

p
BT − TU(1 + ε)

”2

U(1 + ε)

≥ (1−
√
BT)2

U(1 + ε)
.

To bound the value of BT it will prove easier to consider
those intersections that occur early in the Yj walk separately
from those that occur later.

Lemma 3.5. Let γ ∈ [0, 1] and τ ≥ T be such that

∀(X0, Y0) ∈ Ω : Pr (Yτ < XT) ≤ γ .

Then

BT ≤ γT + (τ − T)U(1 + ε) +
TX
i=1

(1 + 2i) max
u,v

Pi(u, v) .

Proof. Recall that

BT = max
(X0,Y0)∈Ω

TX
i=1

Pr (∃j : Xi = Yj) .

When j > τ then

TX
i=1

Pr (∃j > τ : Xi = Yj) ≤ T Pr (Yτ < XT)

≤ γT .

When T < j ≤ τ then

TX
i=1

Pr (∃j ∈ (T, τ] : Xi = Yj)

=

TX
i=1

E

τX
j=T+1

1{Xi=Yj}

=

τX
j=T+1

E

TX
i=1

1{Xi=Yj}

=

τX
j=T+1

Pr (∃i ∈ [1, T] : Xi = Yj)

≤
τX

j=T+1

Pr (∃i : Xi = Yj)

≤ (τ − T)U(1 + ε)

The first equality is because the walks are increasing, so for
fixed i there can be at most one j with Xi = Yj . Likewise
for the third equality but for fixed j. The final inequality
is because Ω is symmetric, so the uniform intersection time
also holds if the roles of the X and Y walks are reversed.

When j ≤ T then

TX
i=1

Pr (∃j ≤ T : Xi = Yj)

≤
TX
i=1

TX
j=0

X
w

Pi(X0, w)Pj(Y0, w)

≤
TX
i=1

max
u,v

Pi(u, v)

iX
j=0

(1 + 1{j<i}) max
z

X
w

Pj(z, w)

=

TX
i=1

(1 + 2i) max
u,v

Pi(u, v) .

The second inequality follows by letting i denote the larger
of the two indices and j the smaller. The final equality is
because

P
w Pj(z, w) = 1.

4. CATCHING KANGAROOS
The collision results of the previous section will now be

applied to the Kangaroo method. Recall that d is chosen

so that the average step size is roughly
√
b−a
2

, and so in
particular the uniform intersection probability is

U =
d+ 1

2d+1 − 1
∼ 2√

b− a
.

Throughout we take

Ω = {(X0, Y0) ∈ Z× Z : |X0 − Y0| < 2d} .

The first step in bounding collision time will be to bound
the uniform intersection time. This will be done by select-
ing some d of the first T steps of the Xi walk (for suitable
T), and using these to construct a uniformly random d-bit

binary string which is independent of the specific step sizes
taken on other steps. This implies that if i ≥ T then the
Xi walk is uniformly distributed over some interval of 2d

elements, and so the probability that some Xi = Yj will be
exactly the expected number of times the Yj walk visits this
interval, divided by the interval size (i.e. 2d).

Lemma 4.1. The Kangaroo walk has

T

„
3

d+ 1

«
≤ (d+ 1)2 ln 2 + (d+ 1) ln d .

That is, if (X0, Y0) ∈ Ω and i ≥ (d + 1)2 ln 2 + (d + 1) ln d
then ˛̨̨̨

Pr (∃j : Xi = Yj)

U
− 1

˛̨̨̨
≤ 3

d+ 1
∼ 3

log2

√
b− a

.

Proof. The Xi walk will be implemented by choosing
k ∈uar {0, 1, . . . , d} and then flipping a coin to decide whether
to increment by 2k or 2k+1 (if k = d then increment by 2d

or 20). We say generator 2k has been chosen if value k was
chosen, even though the step size taken might not be 2k.

We now decompose the Xi walk into a few components.
For k ∈ {0, 1, . . . , d−1} let δk denote the step taken the first
time generator 2k is chosen, so that δk − 2k ∈uar {0, 2k}.
Also, let T be the first time all of the generators {2k}d−1

k=0

have been chosen (so ignore generator 2d). Define

δ =

d−1X
k=0

(δk − 2k) ∈uar {0, 1, . . . , 2d − 1}

and let Ii denote the sum of all increments in the first i
steps except those incorporated in a δk, so that if i ≥ T
then Xi = X0 + Ii + 2d − 1 + δ.

Suppose i ≥ T . Then δ is independent of the value of Ii,
and so

Xi ∈uar [X0 + Ii + 2d − 1, X0 + Ii + 2d+1 − 2] .

Observe that X0 + Ii + 2d − 1 ≥ X0 + 2d − 1 ≥ Y0. Since
U−1 is the average step size for Yj then

Pr (∃j : Xi = Yj | i ≥ T)

=
E
˛̨
{Yj} ∩ [X0 + Ii + 2d − 1, X0 + Ii + 2d+1 − 2]

˛̨
2d

≥ b2d/U−1c
2d

≥ U − 2−d

An upper bound of U+2−d follows by taking ceiling instead
of floor, and so˛̨̨

Pr (∃j : Xi = Yj | i ≥ T)− U
˛̨̨
≤ 2−d . (2)

Next, consider T . In T steps the probability that not all
generators {2k}d−1

k=0 have been chosen is at most

Pr (T > T) ≤ d
„

1− 1

d+ 1

«T
≤ de−T/(d+1) .

It follows that

Pr
“
T ≥ (d+ 1) ln

“
d 2d+1

””
≤ 2−(d+1) .

Thus, if i ≥ (d+ 1)2 ln 2 + (d+ 1) ln d then

Pr (∃j : Xi = Yj)

= (1− Pr (T > i))Pr (∃j : Xi = Yj | i ≥ T)

+Pr (T > i) Pr (∃j : Xi = Yj | i < T) .

Since 0 ≤ Pr (T > i) ≤ 2−(d+1) and the other probabilities
are in [0, 1], then˛̨̨

Pr (∃j : Xi = Yj)− Pr (∃j : Xi = Yj | i ≥ T)
˛̨̨
≤ 2−(d+1)

(3)
By (2) and (3) then˛̨̨

Pr (∃j : Xi = Yj)− U
˛̨̨
≤ 2−d + 2−(d+1) ≤ 3U

d+ 1
.

It remains only to upper bound BT .

Lemma 4.2. If T = (d+ 1)2 ln 2 + (d+ 1) ln d then BT =
od(1).

Proof. This will be shown by applying Lemma 3.5.
We compute the first few values of maxv Pi(u, v) directly.

Observe that Pi(u, v) is exactly ci
(d+1)i where ci is the num-

ber of ways to write v − u as the sum of i (non-distinct,
ordered) elements of {2k}dk=0. To determine ci note that
if the binary expansion of v − u contains B non-zero bits,
then any non-zero bit 2` came about as the sum of at most
i−B+ 1 terms of {2k}`k=`−(i−B), and so any string of more
than i−B consecutive zeros can be contracted to i−B ze-
ros without effecting the number of ways to write v− u, i.e.

it suffices to consider all maxB B(i − B + 1) ≤
`
i+1
2

´2
bit

strings. This simplifies the problem into few enough cases
to make it feasible by brute force, done either by hand or on
a computer. Either way we find the following:

i ci max at v − u =

1 1 12

2 2! 112

3 3! 1112

4
`

3
1

´`
4

2,1,1

´
= 36 1010102

5
`

3
2

´`
5

2,2,1

´
+
`

3
1

´`
5

2,1,1,1

´
= 270 1001001002

6
`

4
2

´`
6

2,2,1,1

´
+
`

4
1

´`
6

2,1,1,1,1

´
= 2520 1001001001002

If i ≥ 6 then

max
v

Pi(u, v) = max
v

X
w

Pi−6(u,w)P6(w, v)

≤ max
v

X
w

Pi−6(u,w) max
w

P6(w, v)

= max
w,v

P6(w, v) ≤ 2520

(d+ 1)6

because
P
w Pi−6(u,w) = 1. Hence

TX
i=1

(1 + 2i) max
u,v

Pi(u, v)

≤ 3 ∗ 1

d+ 1
+

5 ∗ 2

(d+ 1)2
+

7 ∗ 6

(d+ 1)3
+

9 ∗ 36

(d+ 1)4

+
11 ∗ 270

(d+ 1)5
+

(T − 5)(T + 7)2520

(d+ 1)6

∼ 2520(ln 2)2

(d+ 1)2
= od(1) .

It remains only to find values for τ and γ in Lemma 3.5.
Suppose (X0, Y0) ∈ Ω, i.e. |X0 − Y0| < 2d. Then

XT ≤ X0 + T2d < Y0 + (T + 1)2d .

Consider the Yj walk. In the first τ = 2(d+ 1)(T + 1) steps
the expected number of steps of size 2d is µ = 2(T + 1), so
that E[Yτ −Y0] ≥ 2(T +1)2d. With δ = 1/2 then a Chernoff
bound implies that

Pr (Yτ < XT) ≤ e−µδ
2/2

≤ e−2 ln(2)(d+1)2/8

≤ 2−(d+1)2/4 .

It thus suffices to take τ = 2(d+1)(T+1) ∼ (2 ln 2+o(1))(d+

1)3, with γ = 2−(d+1)2/4 and γT = od(1).

Remark 4.3. It is possible to avoid computing powers of
P at the cost of a weaker bound on the rate of convergence
of BT to zero. When i ∈ [1, 3

√
d+ 1] use the bound

max
u,v

Pi(u, v) = max
u,v

X
w

Pi−1(u,w)P(w, v)

≤ max
u,v

X
w

Pi−1(u,w)
1

d+ 1
=

1

d+ 1

When i > κ = 3
√
d+ 1 then consider the proof of Lemma

4.1. Let R denote the generators chosen in the first i steps,
and Ii denote the sum of the increments in the first i steps
except those the first time a generator was chosen. ThenP
k∈R(δk − 2k) is a uniform random variable in a set of

2|R| possible values, so

Pr (Xi = v | R) ≤ max
Ii

Pr (Xi = v | R, Ii) ≤ 2−|R| .

Hence,

max
u,v

Pi(u, v) ≤ Pr (|R| ≤ κ) ∗ 1 + Pr (|R| > κ) 2−κ

≤

d+ 1

κ

!„
κ

d+ 1

«i
∗ 1 + 1 ∗ 1

2κ

≤ (d+ 1)κ (d+ 1)−2i/3 + 2−κ

≤ (d+ 1)−κ/3 + 2−κ

Then

BT ≤ γT + (τ − T)U(1 + ε)

+

κX
i=1

1 + 2i

d+ 1
+

TX
κ+1

(1 + 2i)
“

(d+ 1)−κ/3 + 2−κ
”

= O
“

(d+ 1)−1/3
”

= od(1)

We can now prove the main result of the paper.

Proof of Theorem 1.1. Note that the group elements

g(2k) can be pre-computed, so that each step of a kangaroo
requires only a single group multiplication.

As discussed in the heuristic argument of Section 2, an

average of |Y0−X0|√
b−a/2 steps are needed to put the smaller of

the starting states (e.g. Y0 < X0) within 2d of the one that
started ahead. If the Distinguished Points are uniformly ran-
domly distributed then the heuristic for these points is again

correct. If instead they are roughly constantly spaced and
c = Ω(d2 log d) then observe that, in the proof of Lemma 4.1,
it was established that after T = T (ε) = (d+ 1)2 ln 2 + (d+
1) ln d steps the kangaroos will be nearly uniformly random
over some interval of length 2d ∼ 1

4

√
b− a log2

√
b− a; so if

the Distinguished Points cover a c√
b−a fraction of vertices,

then an average of
√
b−a
c

such samples are needed, which

amounts to T
√
b−a
c

= od(1) ∗
√
b− a extra steps.

It remains to make rigorous the claim regarding p−1. In
the remainder we may thus assume that |Y0 − X0| < 2d.
Take ε = 3

d+1
∼ 3

log2
√
b−a . By Lemma 4.1, the uniform

intersection time is T = T (ε) = (d + 1)2 ln 2 + (d + 1) ln d
with uniform intersection probability U ∼ 2√

b−a , while by

Lemma 4.2 also BT = o(1). The upper bound of Theorem
3.2 is then

`
1
2

+ o(1)
´√

b− a. The lower bound of Theorem

3.2 is then
`

1
2
− o(1)

´√
b− a.

Acknowledgments
The authors thank Dan Boneh for encouraging them to
study the Kangaroo method, and John Pollard for several
helpful comments.

5. REFERENCES
[1] D. Boneh and X. Boyen, “Short Signatures Without

Random Oracles,” Proc. of Eurocrypt 2004, LNCS
3027, pp. 56–73 (2004).

[2] J-H. Kim, R. Montenegro, Y. Peres and P. Tetali, “A
Birthday Paradox for Markov chains, with an optimal
bound for collision in the Pollard Rho Algorithm for
Discrete Logarithm,” Proc. of the 8th Algorithmic
Number Theory Symposium (ANTS-VIII), Springer
LNCS vol. 5011, pp. 402–415 (2008).

[3] J. Lagarias, E. Rains and R.J. Vanderbei, “The
Kruskal Count,” in The Mathematics of Preference,
Choice and Order. Essays in Honor of Peter J.
Fishburn, (Stephen Brams, William V. Gehrlein and
Fred S. Roberts, Eds.), Springer-Verlag: Berlin
Heidelberg, pp. 371–391 (2009).

[4] S. Miller and R. Venkatesan, “Spectral Analysis of
Pollard Rho Collisions,” Proc. of the 7th Algorithmic
Number Theory Symposium (ANTS-VII), Springer
LNCS vol. 4076, pp. 573–581 (2006).

[5] P.C. van Oorschot and M.J. Wiener, “Parallel collision
search with cryptanalytic applications,” Journal of
Cryptology, vol. 12 no. 1, pp. 1–28 (1999).

[6] J. Pollard, “Monte Carlo methods for index
computation mod p,” Mathematics of Computation,
vol. 32 no. 143, pp. 918–924 (1978).

[7] J. Pollard, “Kangaroos, Monopoly and Discrete
Logarithms,” Journal of Cryptology, vol. 13 no. 4,
pp. 437–447 (2000).

[8] E. Teske, “Square-root Algorithms for the Discrete
Logarithm Problem (A Survey),” in Public-Key
Cryptography and Computational Number Theory,
Walter de Gruyter, Berlin - New York, pp. 283–301
(2001).

	Introduction
	Preliminaries
	Uniform Intersection Time and a Collision Bound
	Catching Kangaroos
	References

