
Theorem 6

X

fx;yg2E

Rxy

rxy
= n � 1:

Proof. The proof is similar to the proof of Theorem 3, and begins with the reciprocity relation,

Uxy

z
=c(z) = U zy

x
=c(x)

Multiplying both sides by cxy, and taking sums on both sides,

X

x2N(y)

Uxy

z
cxy=c(z) =

X

x2N(y)

U zy

x
cxy=c(x) = 1 if z 6= y

)
X
y2G

X

x2N(y)

Uxy

z
cxy=c(z) = n � 1

)
X

fx;yg2G

�
Uxy

z
cxy=c(z) + Uyx

z
cyx=c(z)

�
= n � 1

This clearly implies
P

fx;yg2E
Rxy

rxy
= n� 1:
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Summing over z, X
z

Uxy

z
= (1=2)

X
z

d(z) [Rxy + Ryz �Rxz]

But we have, E[Hxy] =
P

z
Uxy

z

proving the theorem.

Recall that the commute time result gives a precise characterization of the \sum" of ex-

pected transit times (Hxy +Hyx) between vertices x and y. While Theorem 5 can be used in

giving yet another proof of the commute time result, we use it to derive a formula relating the

\di�erence" of the expected transit times (Hyx �Hxy) between x and y.

Corollary 4

E[Hyx]� E[Hxy] =
X
z

d(z)(Rxz �Ryz)

Proof. Obvious from Theorem 5!

We must mention here again that the analog of the above corollary, albeit in the random walk

terminology, was proved in [4].

Thus the summary of this section of results is best expressed by

E[Hxy] = mRxy +
1

2

X
z

d(z) [Ryz � Rxz]

E[Hyx] = mRxy �
1

2

X
z

d(z) [Ryz � Rxz]

3 General Networks

Let rxy denote the resistance of branch xy of a general network. The underlying graph is now a

weighted multigraph with conductance cxy = 1=rxy as the weight on edge xy. And cxz = 0 if x

and z are non-adjacent. The weighted degree is c(x) =
P

y2N(x) cxy, sum of the conductances

of branches incident on node x. The transition probabilities pxz of a random walk on G are

now de�ned as follows.

Prob[moving from x to z in one step] = pxz =
cxz

c(x)
if fx; zg 2 E;

= 0 otherwise:

It is not di�cult to see that identity (*) is true in general networks provided we interpret the

weighted degree c(x) to be the degree of a vertex x. The proof of identity (**) below can be

found in [2].

(��) Vzy =
U zy

z

c(z)
8z

Using the above identity, it is straight forward to generalize all the results of the previous

section. (i.e. just follow the same proofs.) Speci�cally, Theorem 3 holds true in a weighted

sense yielding the following general version of Foster's theorem.
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Triangle Inequality for E�ective Resistances. The following triangle inequality for ef-

fective resistances is well known in electrical network theory: (also mentioned as Lemma 14 in

[1])

Rxz + Rzy � Rxy

We show that the inequality can be made precise with the help of traversals in a random walk.

Corollary 3 Any three nodes x; y; z of a network satisfy

Rxz +Rzy � Rxy =
Uyz

x

d(x)
+

Uxz

y

d(y)

Proof. By Theorem 2 and Corollary 2,

Rxz + Rzy �Rxy =
�Uxz

y

d(y)
+

Uyx

z

d(z)

�
+
�Uxy

z

d(z)
+

Uyz

x

d(x)

�
�
�Uxy

z

d(z)
+

Uyx

z

d(z)

�

=
Uyz

x

d(x)
+

Uxz

y

d(y)
:

also = 2
Uyz

x

d(x)
= 2

Uxz

y

d(y)
:

Notice that we have proved Corollaries 1 and 3 from �rst principles. Larry Ruzzo recently

pointed out that Corollary 3 may be related to some already existing literature (Proposition

9-58 of [6]) on random walks.

Proposition 9-58.

E[Hxy] +E[Hyz]�E[Hxz] =
Uxy

z

�(z)

E[Hxy] + E[Hyx] =
Uxy

x

�(x)

where �(x) = stationary probability of x = d(x)=2m.

Surely enough, our interpretation of e�ective resistance (Theorems 1 and 2) together with

Proposition 9-58 yields alternative proofs for Corollaries 1 and 3.

We now turn the above triangle inequality around deriving a result which deserves the

status of a full theorem!

Theorem 5

E[Hxy] =
1

2

X
z

d(z) [Rxy +Ryz � Rxz]

Proof. By the triangle inequality (Corollary 3) we have

Rxy +Ryz �Rxz = 2
Uxy

z

d(z)

Turning it around,

Uxy

z
= (1=2)d(z) [Rxy +Ryz � Rxz]
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Figure 1: Reciprocity

In other words, the location of the current source and the resulting voltage may be interchanged

without a change in voltage.

The theorem requires that the direction of the current source have the same correspondence

with the polarity of the branch voltage in each position. (The theorem also has a dual in terms

of voltage source and current measured in a branch.)

Recall that we have interpreted the voltage Vwy when a unit current ows into x and out

of y to be Uxy

w
=d(w). So by the reciprocity theorem, we have

Corollary 2 The expected number of traversals out of w along a speci�c edge during a random

walk from x to y is the same as the expected number of traversals out of x along a speci�c edge

in a random walk from w to y.

We are now ready to prove Theorem 3.

Proof of Theorem 3: By Cor. 2 we have that

Uxy

z
=d(z) = U zy

x
=d(x):

where the l.h.s. refers to a random walk from x to y, and the r.h.s. refers to a random walk

from z to y. Taking sums on both sides,

X

x2N(y)

Uxy

z
=d(z) =

X

x2N(y)

U zy

x
=d(x) = 1 if z 6= y

This is because the expected number of times we reach y from one of its neighbors in a

nontrivial (z 6= y) random walk from z to y is precisely 1. Therefore

X
y2G

X

x2N(y)

Uxy

z
=d(z) = n � 1

i.e.
X

fx;yg2E

(Uxy

z
=d(z) + Uyx

z
=d(z)) = n � 1:

we are done by Theorem 2.

Remark. From Theorem 3 it trivially follows that

X

fx;yg2E

E[Cxy] = 2m(n� 1):
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We are done by noting that Uw=d(w) is the expected number of traversals out of w along a

speci�c edge in our random roundtrip.

Interpretation of Polya's recurrence theorem. The relation between recurrent random

walks on lattices and resistance of in�nite networks is immediate from our characterization.

A random walk is said to be recurrent if the walker is certain to return to the starting point.

When a positive probability exists that the walker never returns, the random walk is called

transient. The famous theorem of Polya asserts that simple random walk on a d-dimensional

lattice is recurrent for d = 1; 2 and transient for d > 2: From Theorem 1 it is clear that the

random walk is recurrent i� the e�ective resistance between the starting point and \point

at in�nity" goes to in�nity! Intuitively, in�nite resistance at the boundary always forces the

random walker to return home! Doyle and Snell discuss [2] the relation between recurrence

and e�ective resistance, by relating e�ective resistance to escape probability, the probability

that the walker never returns to the starting point. The subtle di�erence in the interpretations

can be explained. They consider e�ective resistance to be the reciprocal of the current ow

when a 1 volt source is applied between the points of interest. Our characterization is based

on the alternative de�nition of e�ective resistance, namely, the voltage developed between the

points of interest when the source is 1 Amp current.

Let Hxy denote the transit time for the random walk from x to y, and let Cxy denote the

commute time for the random roundtrip between x and y; i.e. Cxy = Hxy + Hyx. The

following corollary gives a di�erent way of proving one of the main results of [1].

Corollary 1 Expected commute time E[Cxy] = E[Hxy] + E[Hyx] = 2mRxy.

Proof. Note that as long as we have not yet reached the \terminal" vertices x and y, we keep

visiting other vertices of the graph. So by Theorems 1 and 2, we have

E[Cxy] =
X
w2G

Uw = Rxy

X
w

d(w)

i.e. E[Cxy] = 2mRxy:

It was pointed out to us by P.G. Doyle that the following theorem was originally due to

R.M. Foster [3]. Foster proved a slightly more general theorem using network theory and we

shall see in the next section that our proof can be extended to the general version.

Theorem 3

X

fx;yg2E

Rxy = n � 1:

Before proving this theorem, we interpret the Reciprocity Theorem of electrical networks in

terms of random walks. The Reciprocity theorem is applicable only to single-source networks;

we merely state the theorem, since the proof can be found in any standard circuit theory text

book. (e.g. see [5] .)

Theorem 4 ( Reciprocity ) The voltage V across any branch of a network, due to single

current source I anywhere else in the network, will equal the voltage across the branch at

which the source was originally located if the source is placed at the branch across which the

voltage V was originally measured.
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Theorem 1 The e�ective resistance Rxy between nodes x and y is exactly the expected number

of traversals out of x along any speci�c edge (x; z) in a simple random walk starting at x and

ending in y.

Proof. Our characterization makes use of the well known analogy (see [2]) between random

walks and electrical networks. Let Uxy

z
be the expected number of visits to z (before reaching

y) in a random walk from x to y. So Uxy

y
= 0, and considering all possible ways of reaching z,

we have

Uxy

z
=
X
w

Uxy

w
pwz

=
X
w

Uxy

w

d(w)
(z 6= x; y)

The quantity of interest to us is

Uxy

z

d(z)
=
X
w

1

d(z)

Uxy

w

d(w)
(z 6= x; y)

On the other hand, by Kircho�'s Current Law, it follows that

Vzy =
X
w

1

d(z)
Vwy (z 6= x; y)

where Vzy is the voltage between z and y. Thus we get the following identity (*) by de�ning

Vyy = 0 and Vxy = Uxy

x
=d(x):

(�) Vzy =
U zy

z

d(z)
8z

The right hand side is clearly the expected number of traversals out of x along a speci�c edge.

And e�ective resistance Rxy is, by de�nition, the voltage Vxy when a unit current enters x and

leaves y. Hence we will be done by proving that a unit current indeed enters x and leaves y.

The current in any branch wz is

iwz = (Vwy � Vzy)=1

=
Uxy

w

d(w)
�

Uxy

z

d(z)

i.e. iwz is the expected number of net traversals along wz. This being the interpretation of

current, the current entering x is
P

w
ixz = 1 =

P
z
izy equals the current leaving y.

Theorem 2 Rxy is also the expected number of traversals out of w (6= x; y) along any speci�c

edge (w; z) in a simple random walk from x to y and then back to x.

Proof. Let Uw denote the expected number of visits to w in a random \roundtrip": random

walk from x to y and back to x. Clearly, Uw = Uxy

w
+ Uyx

w
. Using the above identity (*) and

the superposition principle we have

Uw = Vwyd(w)� Vwxd(w)

= Vxyd(w)

= Rxyd(w)
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1 Introduction

A simple random walk on a graph is one in which from any vertex of the graph there is equal

probability of moving to a neighboring vertex. Random walks in graphs have been found to

have interesting analogies in resistor networks. Doyle and Snell made an excellent development

of this topic in [2]. Given a graph, the underlying electrical network is the network obtained

by replacing vertices by nodes and edges by electrical resistances. The e�ective resistance

between any two nodes x and y can be de�ned as the voltage that develops between x and

y when a unit current is maintained through them (i.e. enters one and leaves the other).

We present here precise characterization of e�ective resistance in electrical networks in terms

of random walks on underlying graphs. Our interpretation of e�ective resistance enables us

in giving interesting new proofs for some known results. In particular, the interpretation of

Polya's recurrence theorem in terms of electrical networks becomes obvious. We also obtain

a precise version of the triangle inequality for e�ective resistances. This, in turn, is used in

characterizing the one-way transit times between two vertices in terms of e�ective resistances

of the network. (much in the spirit of the commute time result of [1]).

2 Simple Networks

By a simple network we mean a (�nite) electrical network with all resistances equal. In this

section we assume, with no loss of generality, we are dealing with unit resistances. We discuss

the general case of networks with unequal resistances in the next section.

Consider a simple network with n nodes and m branches. Thus the underlying graph is a

multigraph G = (V;E) with n vertices and m edges. Let d(x) denote the degree of vertex x.

The transition probability pxz of a simple random walk on G is de�ned as follows.

Prob[moving from x to z in one step] = pxz =
1

d(x)
if fx; zg 2 E;

= 0 otherwise:

By a random walk from x to y we mean a random walk which begins at vertex x, goes around

visiting vertices, and stops on reaching y.
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